Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Membranes (Basel) ; 13(3)2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36984700

ABSTRACT

Superhydrophobic poly(vinylidene fluoride) (PVDF) membranes were obtained by a surface treatment consisting of oxygen plasma activation followed by functionalisation with a mixture of silica precursor (SiP) (tetraethyl-orthosilicate [TEOS] or 3-(triethoxysilyl)-propylamine [APTES]) and a fluoroalkylsilane (1H,1H,2H,2H-perfluorooctyltriethoxysilane), and were benchmarked with coated membranes without plasma activation. The modifications acted mainly on the surface, and the bulk properties remained stable. From a statistical design of experiments on surface hydrophobicity, the type of SiP was the most relevant factor, achieving the highest water contact angles (WCA) with the use of APTES, with a maximum WCA higher than 155° for membranes activated at a plasma power discharge of 15 W during 15 min, without membrane degradation. Morphological changes were observed on the membrane surfaces treated under these plasma conditions, showing a pillar-like structure with higher surface porosity. In long-term stability tests under moderate water flux conditions, the WCA of coated membranes which were not activated by oxygen plasma decreased to approximately 120° after the first 24 h (similar to the pristine membrane), whilst the WCA of plasma-treated membranes was maintained around 130° after 160 h. Thus, plasma pre-treatment led to membranes with a superhydrophobic performance and kept a higher hydrophobicity after long-term operations.

2.
Environ Sci Pollut Res Int ; 30(11): 29164-29179, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36409410

ABSTRACT

Characterisation of the fouling attached to PVDF membranes treating an anaerobic effluent for dissolved CH4 recovery was carried out. A commercial flat-sheet PVDF membrane and a PVDF functionalised by grafting of organofluorosilanes (mPVDF) that increased its hydrophobicity were subjected to a continuous flux of an anaerobic reactor effluent in long-term operation tests (> 800 h). The fouling cakes were studied by the membrane autopsy after these tests, combining a staining technique, FTIR, and FESEM-EDX, and the fouling extraction with water and NaOH solutions. Both organic and inorganic fouling were observed, and the main foulants were proteins, polysaccharides, and different calcium and phosphate salts. Also, a significant amount of live cells was detected on the fouling cake (especially on the non-modified PVDF). Although the fouling cake composition was quite heterogeneous, a stratification was observed, with the inorganic fouling mainly in the bulk centre of the cake and the organic fouling mainly located in the lower and upper surfaces of the cake. The mPVDF suffered a more severe fouling, likely owing to a stronger hydrophobic-hydrophobic interaction with the foulants. Irreversible fouling remained on both membranes after the extraction, although a higher irreversible fouling was detected in the mPVDF; however, a complete polysaccharide removal was observed. Regarding the operation performance, PVDF showed a lower stability and suffered a severe degradation, resulting in a lower thickness and perforations. Finally, the decrease in the methane recovery performance of both membranes was associated with the fouling depositions.


Subject(s)
Methane , Water Purification , Anaerobiosis , Polyvinyls/chemistry , Membranes, Artificial , Water Purification/methods
3.
Environ Sci Pollut Res Int ; 29(56): 84125-84136, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35778662

ABSTRACT

Due to widespread use of nanoparticles in surfactant-based formulations, their release into the environment and wastewater is unavoidable and toxic for biota and/or wastewater treatment processes. Because of concerns over the environmental impacts of nanofluids, studies of the fate and environmental impacts, hazards, and toxicities of nanoparticles are beginning. However, interactions between nanoparticles and surfactants and the biodegradability of these mixtures have been little studied until now. In this work, the environmental impacts of nanofluids containing mixtures of surfactants and silica nanoparticles were valuated. The systems studied were hydrophilic silica nanoparticles (sizes 7 and 12 nm), a nonionic surfactant (alkyl polyglucoside), an anionic surfactant (ether carboxylic acid), and mixtures of them. The ultimate aerobic biodegradation and the interfacial and adsorption properties of surfactants, nanoparticles, and mixtures during biodegradation were also evaluated. Ultimate biodegradation was studied below and above the CMCs of the individual surfactants. The interfacial and adsorption properties of surfactant solutions containing nanoparticles were influenced by the addition of silica particles. It was determined that silica nanoparticles reduced the capability of the nonionic surfactant alkyl polyglucoside to decrease the surface tension. Thus, silica NPs promoted a considerable increase in the surfactant CMC, whereas the effect was opposite in the case of the anionic surfactant ether carboxylic acid. Increasing concentrations of surfactant and nanoparticles in the test medium caused decreases in the maximum levels of mineralization reached for both types of surfactants. The presence of silica nanoparticles in the medium reduced the biodegradability of binary mixtures containing nonionic and anionic surfactants, and this effect was more pronounced for larger nanoparticles. These results could be useful in modelling the behaviour of nanofluids in aquatic environments and in selecting appropriate nanofluids containing nanoparticles and surfactants with low environmental impact.


Subject(s)
Nanoparticles , Silicon Dioxide , Surface-Active Agents/toxicity , Environment , Ethers , Carboxylic Acids
4.
Membranes (Basel) ; 12(4)2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35448396

ABSTRACT

A three-step surface modification consisting of activation with NaOH, functionalisation with a silica precursor and organofluorosilane mixture (FSiT), and curing was applied to a poly(vinylidene fluoride) (PVDF) membrane for the recovery of dissolved methane (D-CH4) from aqueous streams. Based on the results of a statistical experimental design, the main variables affecting the water contact angle (WCA) were the NaOH concentration and the FSiT ratio and concentration used. The maximum WCA of the modified PVDF (mPVDFmax) was >140° at a NaOH concentration of 5%, an FSiT ratio of 0.55 and an FSiT concentration of 7.2%. The presence of clusters and a lower surface porosity of mPVDF was detected by FESEM analysis. In long-term stability tests with deionised water at 21 L h−1, the WCA of the mPVDF decreased rapidly to around 105°, similar to that of pristine nmPVDF. In contrast, the WCA of the mPVDF was always higher than that of nmPVDF in long-term operation with an anaerobic effluent at 3.5 L h−1 and showed greater mechanical stability, since water breakthrough was detected only with the nmPVDF membrane. D-CH4 degassing tests showed that the increase in hydrophobicity induced by the modification procedure increased the D-CH4 removal efficiency but seemed to promote fouling.

SELECTION OF CITATIONS
SEARCH DETAIL
...