Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(30): e2119734119, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35867830

ABSTRACT

Recent years have witnessed the detection of an increasing number of complex organic molecules in interstellar space, some of them being of prebiotic interest. Disentangling the origin of interstellar prebiotic chemistry and its connection to biochemistry and ultimately, to biology is an enormously challenging scientific goal where the application of complexity theory and network science has not been fully exploited. Encouraged by this idea, we present a theoretical and computational framework to model the evolution of simple networked structures toward complexity. In our environment, complex networks represent simplified chemical compounds and interact optimizing the dynamical importance of their nodes. We describe the emergence of a transition from simple networks toward complexity when the parameter representing the environment reaches a critical value. Notably, although our system does not attempt to model the rules of real chemistry nor is dependent on external input data, the results describe the emergence of complexity in the evolution of chemical diversity in the interstellar medium. Furthermore, they reveal an as yet unknown relationship between the abundances of molecules in dark clouds and the potential number of chemical reactions that yield them as products, supporting the ability of the conceptual framework presented here to shed light on real scenarios. Our work reinforces the notion that some of the properties that condition the extremely complex journey from the chemistry in space to prebiotic chemistry and finally, to life could show relatively simple and universal patterns.


Subject(s)
Extraterrestrial Environment , Origin of Life
2.
Astrophys J Lett ; 912(1)2021 May 01.
Article in English | MEDLINE | ID: mdl-34257894

ABSTRACT

The chemical compounds carrying the thiol group (-SH) have been considered essential in recent prebiotic studies regarding the polymerization of amino acids. We have searched for this kind of compounds toward the Galactic Centre quiescent cloud G+0.693-0.027. We report the first detection in the interstellar space of the trans-isomer of monothioformic acid (t-HC(O)SH) with an abundance of ~ 1 × 10-10. Additionally, we provide a solid confirmation of the gauche isomer of ethyl mercaptan (g-C2H5SH) with an abundance of ~ 3 × 10-10, and we also detect methyl mercaptan (CH3SH) with an abundance of ~ 5 × 10-9. Abundance ratios were calculated for the three SH-bearing species and their OH-analogues, revealing similar trends between alcohols and thiols with increasing complexity. Possible chemical routes for the interstellar synthesis of t-HC(O)SH, CH3SH and C2H5SH are discussed, as well as the relevance of these compounds in the synthesis of prebiotic proteins in the primitive Earth.

3.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Article in English | MEDLINE | ID: mdl-34031247

ABSTRACT

Cell membranes are a key element of life because they keep the genetic material and metabolic machinery together. All present cell membranes are made of phospholipids, yet the nature of the first membranes and the origin of phospholipids are still under debate. We report here the presence of ethanolamine in space, [Formula: see text]OH, which forms the hydrophilic head of the simplest and second-most-abundant phospholipid in membranes. The molecular column density of ethanolamine in interstellar space is N = (1.51[Formula: see text]0.07)[Formula: see text], implying a molecular abundance with respect to [Formula: see text] of [Formula: see text] Previous studies reported its presence in meteoritic material, but they suggested that it is synthesized in the meteorite itself by decomposition of amino acids. However, we find that the proportion of the molecule with respect to water in the interstellar medium is similar to the one found in the meteorite ([Formula: see text]). These results indicate that ethanolamine forms efficiently in space and, if delivered onto early Earth, could have contributed to the assembling and early evolution of primitive membranes.


Subject(s)
Ethanolamine/analysis , Exobiology , Meteoroids
4.
Astrobiology ; 20(9): 1048-1066, 2020 09.
Article in English | MEDLINE | ID: mdl-32283036

ABSTRACT

In the past decade, astrochemistry has witnessed an impressive increase in the number of detections of complex organic molecules. Some of these species are of prebiotic interest such as glycolaldehyde, the simplest sugar, or aminoacetonitrile, a possible precursor of glycine. Recently, we have reported the detection of two new nitrogen-bearing complex organics, glycolonitrile and Z-cyanomethanimine, known to be intermediate species in the formation process of ribonucleotides within theories of a primordial RNA-world for the origin of life. In this study, we present deep and high-sensitivity observations toward two of the most chemically rich sources in the galaxy: a giant molecular cloud in the center of the Milky Way (G + 0.693-0.027) and a proto-Sun (IRAS16293-2422 B). Our aim is to explore whether the key precursors considered to drive the primordial RNA-world chemistry are also found in space. Our high-sensitivity observations reveal that urea is present in G + 0.693-0.027 with an abundance of ∼5 × 10-11. This is the first detection of this prebiotic species outside a star-forming region. Urea remains undetected toward the proto-Sun IRAS16293-2422 B (upper limit to its abundance of ≤2 × 10-11). Other precursors of the RNA-world chemical scheme such as glycolaldehyde or cyanamide are abundant in space, but key prebiotic species such as 2-amino-oxazole, glyceraldehyde, or dihydroxyacetone are not detected in either source. Future more sensitive observations targeting the brightest transitions of these species will be needed to disentangle whether these large prebiotic organics are certainly present in space.


Subject(s)
Evolution, Chemical , Extraterrestrial Environment/chemistry , Origin of Life , RNA/chemical synthesis , Ribonucleotides/chemical synthesis , Exobiology/methods , Monosaccharides/analysis , Monosaccharides/chemistry , Oxazoles/analysis , Oxazoles/chemistry , RNA/biosynthesis , Urea/analysis , Urea/chemistry
5.
Phys Chem Chem Phys ; 20(8): 5407-5414, 2018 Feb 21.
Article in English | MEDLINE | ID: mdl-28944792

ABSTRACT

We present the first ab initio potential energy surfaces (PESs) for the PO(X2Π)-He van der Waals system. The PESs were obtained using the open-shell partially spin-restricted coupled cluster approach with single, double and perturbative triple excitations [UCCSD(T)]. The augmented correlation-consistent polarized valence triple-zeta (aug-cc-pVTZ) basis set was employed supplemented by mid-bond functions. Integral and differential cross sections for the rotational excitation in PO-He collisions were calculated using the new PES and compared with results in similar systems. Finally, our work presents the first hyperfine-resolved cross sections for this system that are needed for accurate modelling in astrophysical environments.

6.
Mon Not R Astron Soc ; 467(3): 2723-2752, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28579644

ABSTRACT

We report on subarcsecond observations of complex organic molecules (COMs) in the high-mass protostar IRAS 20126+4104 with the Plateau de Bure Interferometer in its most extended configurations. In addition to the simple molecules SO, HNCO and H213CO, we detect emission from CH3CN, CH3OH, HCOOH, HCOOCH3, CH3OCH3, CH3CH2CN, CH3COCH3, NH2CN, and (CH2OH)2. SO and HNCO present a X-shaped morphology consistent with tracing the outflow cavity walls. Most of the COMs have their peak emission at the putative position of the protostar, but also show an extension towards the south(east), coinciding with an H2 knot from the jet at about 800-1000 au from the protostar. This is especially clear in the case of H213CO and CH3OCH3. We fitted the spectra at representative positions for the disc and the outflow, and found that the abundances of most COMs are comparable at both positions, suggesting that COMs are enhanced in shocks as a result of the passage of the outflow. By coupling a parametric shock model to a large gas-grain chemical network including COMs, we find that the observed COMs should survive in the gas phase for ∼ 2000 yr, comparable to the shock lifetime estimated from the water masers at the outflow position. Overall, our data indicate that COMs in IRAS 20126+4104 may arise not only from the disc, but also from dense and hot regions associated with the outflow.

7.
Astrophys J Lett ; 830(1)2016 Oct 10.
Article in English | MEDLINE | ID: mdl-27733899

ABSTRACT

The detection of complex organic molecules (COMs) toward cold sources such as pre-stellar cores (with T<10 K), has challenged our understanding of the formation processes of COMs in the interstellar medium. Recent modelling on COM chemistry at low temperatures has provided new insight into these processes predicting that COM formation depends strongly on parameters such as visual extinction and the level of CO freeze out. We report deep observations of COMs toward two positions in the L1544 pre-stellar core: the dense, highly-extinguished continuum peak with A V ≥30 mag within the inner 2700 au; and a low-density shell with average A V ~7.5-8 mag located at 4000 au from the core's center and bright in CH3OH. Our observations show that CH3O, CH3OCH3 and CH3CHO are more abundant (by factors ~2-10) toward the low-density shell than toward the continuum peak. Other COMs such as CH3OCHO, c-C3H2O, HCCCHO, CH2CHCN and HCCNC show slight enhancements (by factors ≤3) but the associated uncertainties are large. This suggests that COMs are actively formed and already present in the low-density shells of pre-stellar cores. The modelling of the chemistry of O-bearing COMs in L1544 indicates that these species are enhanced in this shell because i) CO starts freezing out onto dust grains driving an active surface chemistry; ii) the visual extinction is sufficiently high to prevent the UV photo-dissociation of COMs by the external interstellar radiation field; and iii) the density is still moderate to prevent severe depletion of COMs onto grains.

SELECTION OF CITATIONS
SEARCH DETAIL
...