Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(22)2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37999304

ABSTRACT

The pursuit of efficient, profitable, and ecofriendly materials has defined solar cell research from its inception to today. Some materials, such as copper nitride (Cu3N), show great promise for promoting sustainable solar technologies. This study employed reactive radio-frequency magnetron sputtering using a pure nitrogen environment to fabricate quality Cu3N thin films to evaluate how both temperature and gas working pressure affect their solar absorption capabilities. Several characterization techniques, including X-ray diffraction (XRD), Rutherford backscattering spectrometry (RBS), Raman spectroscopy, scanning electron microscopy (SEM), nanoindentation, and photothermal deflection spectroscopy (PDS), were used to determine the main properties of the thin films. The results indicated that, at room temperature, it is possible to obtain a material that is close to stoichiometric Cu3N material (Cu/N ratio ≈ 3) with (100) preferred orientation, which was lost as the substrate temperature increases, demonstrating a clear influence of this parameter on the film structure attributed to nitrogen re-emission at higher temperatures. Raman microscopy confirmed the formation of Cu-N bonds within the 628-637 cm-1 range. In addition, the temperature and the working pressure significantly also influence the film hardness and the grain size, affecting the elastic modulus. Finally, the optical properties revealed suitable properties at lower temperatures, including bandgap values, refractive index, and Urbach energy. These findings underscore the potential of Cu3N thin films in solar energy due to their advantageous properties and resilience against defects. This research paves the way for future advancements in efficient and sustainable solar technologies.

2.
Polymers (Basel) ; 13(15)2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34372091

ABSTRACT

Co-cured multi-material metal-polymer composites joints are recent interesting structural materials for locally reinforcing a structure in specific areas of high structural requirements, in fibre metal laminates and lightweight high-performance structures. The influence of manufacturing processes on the morphological quality and their mechanical behaviour has been analysed on joints constituted by sol-gel treated Ti6Al4V and carbon fibre reinforced composites (CFRP). In addition, carbon nanotubes (CNT) have been added to an epoxy matrix to develop multiscale CNT reinforced CFRP, increasing their electrical conductivity and allowing their structural health monitoring (SHM). Mechanical behaviour of manufactured multi-material joints is analysed by the measurement of lap shear strength (LSS) and Mode I adhesive fracture energy (GIC) using double cantilever beam specimens (DCB). It has been proven that the addition of MWCNT improves the conductivity of the multi-material joints, even including surface treatment with sol-gel, allowing structural health monitoring (SHM). Moreover, it has been proven that the manufacturing process affects the polymer interface thickness and the porosity, which strongly influence the mechanical and SHM behaviour. On the one hand, the increase in the adhesive layer thickness leads to a great improvement in mode I fracture energy. On the other hand, a lower interface thickness enhances the SHM sensibility due to the proximity between MWCNT and layers of conductive substrates, carbon woven and titanium alloy.

SELECTION OF CITATIONS
SEARCH DETAIL
...