Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Org Biomol Chem ; 20(4): 831-839, 2022 01 26.
Article in English | MEDLINE | ID: mdl-35018948

ABSTRACT

An efficient ruthenium-catalyzed N-alkylation of amines, amides and sulfonamides has been developed employing novel pentamethylcyclopentadienylruthenium(II) complexes bearing the methylene linked bis(NHC) ligand bis(3-methylimidazol-2-ylidene)methane. The acetonitrile complex 2 has proven particularly effective with a broad range of substrates with low catalyst loading (0.1-2.5 mol%) and high functional group tolerance under mild conditions. A total of 52 N-alkylated organonitrogen compounds including biologically relevant scaffolds were synthesized from (hetero)aromatic and aliphatic amines, amides and sulfonamides using alcohols or diols as alkylating agents in up to 99% isolated yield, even on gram-scale reactions. In the case of sulfonamides, it is the first example of N-alkylation employing a transition-metal complex bearing NHC ligands.

2.
Evolution ; 73(10): 2106-2121, 2019 10.
Article in English | MEDLINE | ID: mdl-31420977

ABSTRACT

A proposed fundamental driver of group living is more reliable, predictable foraging and reproduction, i.e., reduced variance in food intake and reproductive output. However, existing theories on variance reduction in group foraging are simplistic, refer to variance at the level of individuals and groups without linking the two, and do not spell out crucial underlying assumptions. We provide a new, widely applicable framework for identifying when variance reduction conveys fitness benefits of group foraging in a wide range of organisms. We discuss critical limitations of established theories, the Central Limit Theorem and Risk-Sensitive Foraging Theory applied to group foraging, and incorporate them into our framework while addressing the confusion over the levels of variance and identifying previously unaddressed assumptions. Through a field study on colonial spiders, Cyrtophora citricola, we demonstrate the importance of evaluating the level of food sharing as a critical first step, previously overlooked in the literature. We conclude that variance reduction provides selective advantages only under narrow conditions and does not provide a universal benefit to group foraging as previously proposed. Our framework provides an important tool for identifying evolutionary drivers of group foraging and understanding the role of fitness variance in the evolution of group living.


Subject(s)
Biological Evolution , Feeding Behavior , Spiders/physiology , Animals , Models, Theoretical
3.
Dalton Trans ; 44(39): 17015-9, 2015 Oct 21.
Article in English | MEDLINE | ID: mdl-26384036

ABSTRACT

New indenyl nickel(ii) complexes bearing arsine or stibine ligands synthesised by a new methodology exhibit very high catalytic activities for the oligomerisation of styrene.

4.
Inorg Chem ; 52(15): 8919-32, 2013 Aug 05.
Article in English | MEDLINE | ID: mdl-23834393

ABSTRACT

The complex [Cp*RuCl((i)Pr2PNHPy)] (1) reacts with 1-alkynes HC≡CR (R = COOMe, C6H4CF3) in dichloromethane furnishing the corresponding vinylidene complexes [Cp*Ru═C═CHR((i)Pr2PNHPy)]Cl (R = COOMe (2a-Cl), C6H4CF3 (2b-Cl)), whereas reaction of 1 with NaBPh4 in MeOH followed by addition of HC≡CR (R = COOMe, C6H4CF3) yields the metastable π-alkyne complexes [Cp*Ru(η(2)-HC≡CR)((i)Pr2PNHPy)][BPh4] (R = COOMe (3a-BPh4), C6H4CF3 (3b-BPh4)). The transformation of 3a-BPh4/3b-BPh4 into their respective vinylidene isomers in dichloromethane is very slow and requires hours to its completion. However, this process is accelerated by addition of LiCl in methanol solution. Reaction of 1 with HC≡CR (R = COOMe, C6H4CF3) in MeOH goes through the intermediacy of the π-alkyne complexes [Cp*Ru(η(2)-HC≡CR)((i)Pr2PNHPy)]Cl (R = COOMe (3a-Cl), C6H4CF3 (3b-Cl)), which rearrange to vinylidenes in minutes, i.e., much faster than their counterparts containing the [BPh4](-) anion. The kinetics of these isomerizations has been studied in solution by NMR. With the help of DFT studies, these observations have been interpreted in terms of chloride- and methanol-assisted hydrogen migrations. Calculations suggest participation of a hydrido-alkynyl intermediate in the process, in which the hydrogen atom can be transferred from the metal to the ß-carbon by means of species with weak basic character acting as proton shuttles.

5.
Inorg Chem ; 50(24): 12399-401, 2011 Dec 19.
Article in English | MEDLINE | ID: mdl-22087635

ABSTRACT

The complexes [Cp*RuCl((i)Pr(2)PSX)] (X = pyridyl, quinolyl) react directly with alcohols ROH (R = Me, Et, (i)Pr, (n)Pr) and NaBPh(4), affording the novel cationic hydrido(alkoxo) derivatives [Cp*RuH(OR)((i)Pr(2)PSX)][BPh(4)]. These ruthenium(IV) compounds result from the formal oxidative addition of the alcohol to the 16-electron fragment {[Cp*Ru((i)Pr(2)PSX)](+)}, generated in situ upon chloride dissociation. The hydrido(alkoxo) complexes are reversibly deprotonated by a strong base such as KOBu(t), yielding the neutral alkoxides [Cp*Ru(OR)((i)Pr(2)PSX)], which are remarkably stable toward ß elimination and do not generate the corresponding hydrides. The hydrido(alkoxo) complexes undergo a slow electron-transfer process, releasing H(2) and generating the dinuclear ruthenium(III) complex [{Cp*Ru(κ(2)-N,S-µ S-SC(5)H(4)N)}(2)][BPh(4)](2). In this species, the Ru-Ru separation is very short and consistent with what is expected for a Ru≡Ru triple bond.

6.
Inorg Chem ; 49(13): 6035-57, 2010 Jul 05.
Article in English | MEDLINE | ID: mdl-20524695

ABSTRACT

The trihydride complexes [Cp*RuH(3)(kappa(1)-P-(i)Pr(2)PCH(2)X)] [X = pyridine (Py), 2a; quinoline (Quin), 2b] have been prepared by reaction of the corresponding chloro derivatives [Cp*RuCl(kappa(2)-P,N-(i)Pr(2)PCH(2)X)] [X = Py (1a), Quin (1b)] with NaBH(4) in methanol. Both 2a and 2b exhibit quantum-mechanical exchange coupling. The proton-transfer reactions to 2a and 2b using strong as well as weak proton donors have been experimentally and computationally studied. Density functional theory studies have been performed to analyze the stability of the proposed species, the hydrogen exchange, and the protonation pathway. The reactions with weak donors such as PhCOOH, indole, or salicylic acid in benzene or toluene result in the formation of hydrogen-bonded adducts between the proton donor and the pendant pyridine or quinoline group. However, in a more polar solvent such as dichloromethane, there is spectral evidence for the proton transfer to the hydride to yield a dihydrogen complex. The protonation with CF(3)SO(3)H in CD(2)Cl(2) occurs in a stepwise manner. In a first step, the pendant pyridine or quinoline group is protonated to yield [Cp*RuH(3)(kappa(1)-P-(i)Pr(2)PCH(2)XH)](+) [X = Py (4a) or Quin (4b)]. The NH proton is then transferred to the hydride and one molecule of dihydrogen is released, furnishing the cationic mono(dihydrogen) complexes [Cp*Ru(H(2))(kappa(2)-P,N-(i)Pr(2)PCH(2)X)](+) [X = Py (5a) or Quin (5b)]. These species are thermally stable and do not undergo irreversible rearrangement to their dihydride isomers. In the presence of an excess of acid, a second protonation occurs at the hydride site and the dicationic complexes [Cp*RuH(4)(kappa(1)-P,N-(i)Pr(2)PCH(2)XH)](2+) [X = Py (6a) or Quin (6b)] are generated. These species are stable up to 273 K and consist of equilibrium mixtures between bis(dihydrogen) and dihydrido(dihydrogen) tautomeric forms. Above this temperature, 6a and 6b are converted into the corresponding cationic mono(dihydrogen) complexes 5a/5b. The crystal structures of [Cp*RuCl(kappa(2)-P,N-(i)Pr(2)PCH(2)Quin)] (1b), [Cp*RuH(3)(kappa(1)-P-(i)Pr(2)PCH(2)Quin)] (2b), [Cp*RuH(3)(kappa(1)-P-(i)Pr(2)PCH(2)Py...H...OOCC(6)H(4)OH)] (3a), [Cp*Ru(H(2))(kappa(2)-P,N-(i)Pr(2)PCH(2)Quin)][BAr'(4)] (5b), [Cp*Ru(N(2))(kappa(2)-P,N-(i)Pr(2)PCH(2)Quin)][BAr'(4)] (8b), and [Cp*Ru(O(2))(kappa(2)-P,N-(i)Pr(2)PCH(2)Quin)][BAr'(4)] (9b) are reported.

7.
Dalton Trans ; (10): 1842-52, 2009 Mar 14.
Article in English | MEDLINE | ID: mdl-19240920

ABSTRACT

The cationic complexes [Ni(eta(3)-CH(2)C(R)CH(2))(SbPh(3))(3)][BAr'(4)] (R = CH(3), H ; Ar' = 3,5-C(6)H(3)(CF(3))(2)), [Ni(eta(3)-CH(2)C(R)CH(2))(AsPh(3))(2)][BAr'(4)] (R = CH(3), H ), [Ni(eta(3)-CH(2)CHCH(2))(PPh(3))(L)][BAr'(4)] (L = SbPh(3), AsPh(3)), and the neutral derivatives [Ni(eta(3)-CH(2)C(R)CH(2))Br(L)] (L = SbPh(3), R = CH(3), H ; L = AsPh(3), R = CH(3), H ) have been prepared and characterized. The X-ray crystal structures of , , , and have been determined. These complexes are very active catalyst precursors for the low-molecular weight oligomerization of RC(6)H(4)CH[double bond, length as m-dash]CH(2) to mainly dimers and trimers of styrene (R = H) or 4-methylstyrene (R = CH(3)). They also catalyse the oligomerization of alpha-methylstyrene to dimers and trimers, or to higher oligomers depending upon the reaction conditions (solvent and temperature). The oligomerization reactions were carried out at 25 degrees C in most cases, in dichloromethane, 1,2-dichloroethane or fluorobenzene, using a olefin/catalyst ratio equal to 2000. The oligomerization products were characterised by means of GPC/SEC.

8.
Dalton Trans ; (28): 3000-9, 2007 Jul 28.
Article in English | MEDLINE | ID: mdl-17622417

ABSTRACT

The complexes [Ni(eta(3)-CH(2)CHCH(2))Br(kappa(1)P-PR(2)CH(2)CH=CH(2))] (R = Ph 1, (i)Pr2 ) and [Ni(eta(3)-CH(2)C(R')CH(2))(kappa(1)P-PR(2)CH(2)CH=CH(2))(2)][BAr'(4)] (R' = H, R = Ph 4a, R = (i)Pr 4b; R' = CH(3), R = Ph 5a, R = (i)Pr 5b; Ar' = 3,5-C(6)H(3)(CF(3))(2)) have been prepared and characterized. The X-ray crystal structures of 1, 2 and 5b have been determined. 4a-b and 5a-b are catalyst precursors for the oligomerization of RC(6)H(4)CH=CH(2) to oligostyrene (R = H) or oligo(4-methylstyrene) (R = CH(3)) respectively, without the need of a co-catalyst such as methylalumoxane. The catalytic activities range from moderate to high. The oligomerization reactions are carried out in the temperature interval 25-40 degrees C in 1,2-dichloroethane, using an olefin/catalyst ratio equal to 200, yielding oligostyrenes with a high isotactic fraction content P(m), with M(n) in the range 700-1900 Dalton, and polydispersities between 1.22 and 1.64. The cationic complexes 4a-b and 5a-b are also effective catalyst precursors for the hydrosilylation reactions of styrene or 4-methylstyrene with PhSiH(3) in 1,2-dichloroethane at 40 degrees C using an olefin/catalyst ratio equal to 100, leading selectively to RC(6)H(4)CH(SiH(2)Ph)CH(3) (R = H, CH(3)) in 50-79% yield.

9.
Inorg Chem ; 46(3): 1001-12, 2007 Feb 05.
Article in English | MEDLINE | ID: mdl-17257044

ABSTRACT

The complexes [(C5R5)RuH(dippae)] [R = H (1a), Me (2a); dippae = 1,2-bis(diisopropylphosphinoamino)ethane] and [(C5R5)RuH((R,R)-dippach)] [R = H (1b), Me (2b); (R,R)-dippach = (R,R)-1,2-bis(diisopropylphosphinoamino)cyclohexane] have been prepared and characterized. The cationic ruthenium(IV) dihydride derivatives [(C5R5)RuH2(dippae)][BPh4] [R = H (3a), Me (4a)] and [(C5R5)RuH2((R,R)-dippach)][BPh4] [R = H (3b), Me (4b)] are also reported. No significant intramolecular interaction between the amino protons and the hydrogen atoms bound to the metal has been observed in any of these compounds. The X-ray crystal structure of 4a was determined. The proton-transfer processes over the monohydrides 2a and 2b with HBF4.OEt2 have been studied by NMR spectroscopy. Dicationic dihydride complexes [CpRuH2(LH)]2+ [LH = dippaeH+ (5a), (R,R)-dippachH+ (5b)] and [Cp*RuH2(LH)]2+ [LH = dippaeH+ (6a), (R,R)-dippachH+ (6b)] result respectively from the protonation of either the monohydrides 1a,b or 2a,b or the dihydrides 3a,b or 4a,b at one of the NH groups of the phosphinoamine ligands by an excess of HBF4. These dicationic derivatives exhibit fluxional behavior in solution. In the course of the protonation of 1a with HBF4.OEt2, a cationic dihydrogen complex and a dihydrogen-bonded derivative have been identified as intermediates by NMR spectroscopy. Another dihydrogen species, namely, [CpRu(H...HOOCPh)((R,R)-dippach)], was also identified in the course of the reaction of 1b with benzoic acid in toluene-d8. The reaction of 1a with 0.5 equiv of 1,1,1,3,3,3-hexafluoroisopropanol generates a hydride species having a very short (T1)min of 6.5 ms at 400 MHz, an experimental fact for which no satisfactory explanation has yet been found.

10.
Chem Commun (Camb) ; (10): 1168-9, 2003 May 21.
Article in English | MEDLINE | ID: mdl-12778718

ABSTRACT

The pseudotetrahedral, formally 5-coordinate complex [Ni(eta 3-CH2C(CH3)CH2)(SbPh3)3][BAr'4] (Ar' = 3,5-C6H3(CF3)2) as well as the 4-coordinate derivative [Ni(eta 3-CH2C(CH3)CH2)(AsPh3)2][BAr'4] act as extremely efficient catalysts for the oligomerization of styrene.

SELECTION OF CITATIONS
SEARCH DETAIL
...