Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Pineal Res ; 59(1): 70-9, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25904243

ABSTRACT

Hepatic mitochondrial dysfunction is thought to play a role in the development of liver steatosis and insulin resistance, which are both common characteristics of obesity and type 2 diabetes mellitus (T2DM). It was hypothesized that the antioxidant properties of melatonin could potentially improve the impaired functions of hepatic mitochondria in diabetic obese animals. Male Zucker diabetic fatty (ZDF) rats and lean littermates (ZL) were given either melatonin (10 mg/kg BW/day) orally for 6 wk (M-ZDF and M-ZL) or vehicle as control groups (C-ZDF and C-ZL). Hepatic function was evaluated by measurement of serum alanine transaminase and aspartate transaminase levels, liver histopathology and electron microscopy, and hepatic mitochondrial functions. Several impaired functions of hepatic mitochondria were observed in C-ZDF in comparison with C-ZL rats. Melatonin treatment to ZDF rats decreases serum levels of ALT (P < 0.001), alleviates liver steatosis and vacuolation, and also mitigates diabetic-induced mitochondrial abnormalities, glycogen, and lipid accumulation. Melatonin improves mitochondrial dysfunction in M-ZDF rats by increasing activities of mitochondrial citrate synthase (P < 0.001) and complex IV of electron transfer chain (P < 0.05) and enhances state 3 respiration (P < 0.001), respiratory control index (RCR) (P < 0.01), and phosphorylation coefficient (ADP/O ratio) (P < 0.05). Also melatonin augments ATP production (P < 0.05) and diminishes uncoupling protein 2 levels (P < 0.001). These results demonstrate that chronic oral melatonin reduces liver steatosis and mitochondria dysfunction in ZDF rats. Therefore, it may be beneficial in the treatment of diabesity.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Liver/metabolism , Melatonin/therapeutic use , Mitochondria/drug effects , Mitochondria/metabolism , Animals , Blotting, Western , Cell Line, Tumor , Diabetes Mellitus, Experimental/metabolism , Humans , Immunohistochemistry , In Situ Nick-End Labeling , Membrane Potential, Mitochondrial/drug effects , Mitochondria/pathology , Obesity/drug therapy , Obesity/metabolism , RNA Interference , Rats
2.
Chem Biol Interact ; 220: 84-93, 2014 Sep 05.
Article in English | MEDLINE | ID: mdl-24973643

ABSTRACT

Visceral leishmaniasis, a potentially fatal disease, remains a major international health problem. Only a limited number of effective antileishmanial agents are available for chemotherapy, and many of them are expensive with severe side effects or have a markedly reduced effectiveness due to the development of drug resistance. Hence, there is a genuine need to develop a novel effective and less toxic antileishmanial drug. Melatonin, a neurohormone found in animals, plants, and microbes, can participate in various biological and physiological functions. Several in vitro or in vivo studies have reported the inhibitory effect of melatonin against many parasites via various mechanisms, including modulation of intracellular concentrations of calcium in the parasite and/or any other suggested mechanism. Importantly, many of available antileishmanial drugs have been reported to exert their effects by disrupting calcium homeostasis in the parasite. The objective of the present study was to test the efficacy of exogenous melatonin against Leishmania infantum promastigotes in vitro. Interestingly, melatonin not only demonstrated a significant antileishmanial activity of against promastigote viability in tested cultures but was also accompanied by an alteration of the calcium homeostasis of parasite mitochondrion, represented by earlier mitochondrial permeability transition pore opening, and by changes in some mitochondrial parameters are critical to parasite survival. These pioneering findings suggest that melatonin may be a candidate for the development of novel effective antileishmanial agents either alone or in associations with other drugs.


Subject(s)
Leishmania infantum , Melatonin/pharmacology , Mitochondria/drug effects , Animals , Antiprotozoal Agents/pharmacology , Inhibitory Concentration 50 , Leishmania infantum/drug effects , Mitochondria/chemistry , Mitochondria/enzymology , Nitrites/chemistry , Signal Transduction/drug effects , Superoxide Dismutase/metabolism
3.
J Pineal Res ; 57(1): 103-9, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24867433

ABSTRACT

Mitochondrial dysfunction in adipose tissue may contribute to obesity-related metabolic derangements such as type 2 diabetes mellitus (T2DM). Because mitochondria are a target for melatonin action, the goal of this study was to investigate the effects of melatonin on mitochondrial function in white (WAT) and beige inguinal adipose tissue of Zücker diabetic fatty (ZDF) rats, a model of obesity-related T2DM. In this experimental model, melatonin reduces obesity and improves the metabolic profile. At 6 wk of age, ZDF rats and lean littermates (ZL) were subdivided into two groups, each composed of four rats: control (C-ZDF and C-ZL) and treated with oral melatonin in the drinking water (10 mg/kg/day) for 6 wk (M-ZDF and M-ZL). After the treatment period, animals were sacrificed, tissues dissected, and mitochondrial function assessed in isolated organelles. Melatonin increased the respiratory control ratio (RCR) in mitochondria from white fat of both lean (by 26.5%, P < 0.01) and obese (by 34.5%, P < 0.01) rats mainly through a reduction of proton leaking component of respiration (state 4) (28% decrease in ZL, P < 0.01 and 35% in ZDF, P < 0.01). However, melatonin treatment lowered the RCR in beige mitochondria of both lean (by 7%, P < 0.05) and obese (by 13%, P < 0.05) rats by maintaining high rates of uncoupled respiration. Melatonin also lowered mitochondrial oxidative status by reducing nitrite levels and by increasing superoxide dismutase activity. Moreover, melatonin treatment also caused a profound inhibition of Ca-induced opening of mPTP in isolated mitochondria from both types of fat, white and beige, in both lean and obese rats. These results demonstrate that chronic oral melatonin improves mitochondrial respiration and reduces the oxidative status and susceptibility to apoptosis in white and beige adipocytes. These melatonin effects help to prevent mitochondrial dysfunction and thereby to improve obesity-related metabolic disorders such as diabetes and dyslipidemia of ZDF rats.


Subject(s)
Adipose Tissue, White/drug effects , Adipose Tissue, White/metabolism , Melatonin/pharmacology , Mitochondria/drug effects , Animals , Calcium/pharmacology , Cell Respiration/drug effects , Male , Rats , Rats, Zucker
4.
J Pineal Res ; 55(4): 416-23, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24007241

ABSTRACT

Melatonin limits obesity in rodents without affecting food intake and activity, suggesting a thermogenic effect. Identification of brown fat (beige/brite) in white adipose tissue (WAT) prompted us to investigate whether melatonin is a brown-fat inducer. We used Zücker diabetic fatty (ZDF) rats, a model of obesity-related type 2 diabetes and a strain in which melatonin reduces obesity and improves their metabolic profiles. At 5 wk of age, ZDF rats and lean littermates (ZL) were subdivided into two groups, each composed of four rats: control and those treated with oral melatonin in the drinking water (10 mg/kg/day) for 6 wk. Melatonin induced browning of inguinal WAT in both ZDF and ZL rats. Hematoxylin-eosin staining showed patches of brown-like adipocytes in inguinal WAT in ZDF rats and also increased the amounts in ZL animals. Inguinal skin temperature was similar in untreated lean and obese rats. Melatonin increased inguinal temperature by 1.36 ± 0.02°C in ZL and by 0.55 ± 0.04°C in ZDF rats and sensitized the thermogenic effect of acute cold exposure in both groups. Melatonin increased the amounts of thermogenic proteins, uncoupling protein 1 (UCP1) (by ~2-fold, P < 0.01) and PGC-1α (by 25%, P < 0.05) in extracts from beige inguinal areas in ZL rats. Melatonin also induced measurable amounts of UCP1 and stimulated by ~2-fold the levels of PGC-1α in ZDF animals. Locomotor activity and circulating irisin levels were not affected by melatonin. These results demonstrate that chronic oral melatonin drives WAT into a brown-fat-like function in ZDF rats. This may contribute to melatonin's control of body weight and its metabolic benefits.


Subject(s)
Adipose Tissue, White/drug effects , Adipose Tissue, White/metabolism , Melatonin/pharmacology , Adipose Tissue, Brown/metabolism , Animals , Body Weight/drug effects , Male , Motor Activity/drug effects , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Rats , Rats, Zucker , Transcription Factors/metabolism
5.
J Pineal Res ; 54(4): 381-8, 2013 May.
Article in English | MEDLINE | ID: mdl-23020082

ABSTRACT

The aim of this study was to investigate the effects of melatonin on low-grade inflammation and oxidative stress in young male Zucker diabetic fatty (ZDF) rats, an experimental model of metabolic syndrome and type 2 diabetes mellitus (T2DM). ZDF rats (n = 30) and lean littermates (ZL) (n = 30) were used. At 6 wk of age, both lean and fatty animals were subdivided into three groups, each composed of 10 rats: naive (N), vehicle treated (V), and melatonin treated (M) (10 mg/kg/day) for 6 wk. Vehicle and melatonin were added to the drinking water. Pro-inflammatory state was evaluated by plasma levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and C-reactive protein (CRP). Also, oxidative stress was assessed by plasma lipid peroxidation (LPO), both basal and after Fe(2+)/H2O2 inducement. ZDF rats exhibited higher levels of IL-6 (112.4 ± 1.5 pg/mL), TNF-α (11.0 ± 0.1 pg/mL) and CRP (828 ± 16.0 µg/mL) compared with lean rats (IL-6, 89.9 ± 1.0, P < 0.01; TNF-α, 9.7 ± 0.4, P < 0.01; CRP, 508 ± 21.5, P < 0.001). Melatonin lowered IL-6 (10%, P < 0.05), TNF-α (10%, P < 0.05), and CRP (21%, P < 0.01). Basal and Fe(2+)/H2O2-induced LPO, expressed as malondialdehyde equivalents (µmol/L), were higher in ZDF rats (basal, 3.2 ± 0.1 versus 2.5 ± 0.1 in ZL, P < 0.01; Fe(2+)/H2O2-induced, 8.7 ± 0.2 versus 5.5 ± 0.3 in ZL; P < 0.001). Melatonin improved basal LPO (15%, P < 0.05) in ZDF rats, and Fe(2+)/H2O2- induced LPO in both ZL (15.2%, P < 0.01) and ZDF rats (39%, P < 0.001). These results demonstrated that oral melatonin administration ameliorates the pro-inflammatory state and oxidative stress, which underlie the development of insulin resistance and their consequences, metabolic syndrome, diabetes, and cardiovascular disease.


Subject(s)
Diabetes Mellitus, Experimental/prevention & control , Inflammation/prevention & control , Melatonin/therapeutic use , Oxidative Stress/drug effects , Animals , Male , Melatonin/pharmacology , Rats , Rats, Zucker
SELECTION OF CITATIONS
SEARCH DETAIL
...