Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 12(10)2021 10 09.
Article in English | MEDLINE | ID: mdl-34680981

ABSTRACT

The American tropics are hotspots of wild and domesticated plant biodiversity, which is still underutilized by breeding programs despite being conserved at regional gene banks. The improvement of those programs depends on long-term public funds and the maintenance of specialized staff. Unfortunately, financial ups and downs complicate staff connectivity and their research impact. Between 2000 and 2010, Agrosavia (Corporación Colombiana de Investigación Agropecuaria) dramatically decreased its public financial support. In 2017, we surveyed all 52 researchers from Agrosavia involved in plant breeding and plant genetic resource programs to examine the effect of decimating funds in the last ten years. We hypothesized that the staff dedicated to plant breeding still suffer a strong fragmentation and low connectivity. As we expected, the social network among researchers is weak. The top ten central leaders are predominantly males with an M.Sc. degree but have significant experience in the area. The staff has experience in 31 tropical crops, and 17 are on the list of underutilized species. Moreover, although 26 of these crops are in the national germplasm bank, this has not been the primary source for their breeding programs. We proposed five principles to improve connectivity among teams and research impact: (1) The promotion of internal discussion about gender gaps and generation shifts to design indicators to monitor and decrease this disparity over time. (2) The construction of long-term initiatives and synergies with the Colombian government to support the local production of food security crops independent of market trends. (3) Better collaboration between the National Plant Germplasm Bank and plant breeding researchers. (4) A concerted priority list of species (especially those neglected or underutilized) and external institutions to better focus the collaborative efforts in research using public funds. (5) Better spaces for the design of projects among researchers and training programs in new technologies. These principles could also apply in other tropical countries with public plant breeding research programs facing similar challenges.


Subject(s)
Genes, Plant , Plant Breeding , Plants/genetics , Tropical Climate , Adult , Biodiversity , Colombia , Crops, Agricultural/genetics , Female , Humans , Male , Research Personnel
2.
Microorganisms ; 8(11)2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33187375

ABSTRACT

Anaerobic fungi in the gut of domesticated and wild mammalian herbivores play a key role in the host's ability to utilize plant biomass. Due to their highly effective ability to enzymatically degrade lignocellulose, anaerobic fungi are biotechnologically interesting. Numerous factors have been shown to affect the ability of anaerobic fungi to break down plant biomass. However, methods to reduce the non-productive lag time in batch cultures and the effect of leaf-blade cut-length and condition on the fungal fermentation are not known. Therefore, experimentation using a novel gas production approach with pre-grown, axenic cultures of Neocallimastix frontalis was performed using both fresh and air-dried perennial ryegrass leaf-blades of different cut-lengths. The methodology adopted removed the lag-phase and demonstrated the digestion of un-autoclaved leaf-blades. Fermentation of leaf-blades of 4.0 cm cut-length produced 18.4% more gas yet retained 11.2% more apparent DM relative to 0.5 cm cut-length leaf-blades. Drying did not affect fermentation by N. frontalis, although an interaction between drying and leaf-blade cut-length was noted. Removal of the lag phase and the use of un-autoclaved substrates are important when considering the biotechnological potential of anaerobic fungi. A hypothesis based upon sporulation at cut surfaces is proposed to describe the experimental results.

3.
FEMS Microbiol Ecol ; 66(3): 537-45, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18673390

ABSTRACT

Anaerobic fungi (Neocallimastigales) are active degraders of fibrous plant material in the rumen. However, only limited information is available relating to how quickly they colonize ingested feed particles. The aim of this study was to determine the dynamics of initial colonization of forage by anaerobic fungi in the rumen and the impact of different postsampling wash procedures used to remove loosely associated microorganisms. Neocallimastigales-specific molecular techniques were optimized to ensure maximal coverage before application to assess the population size (quantitative PCR) and composition (automated ribosomal intergenic spacer analysis) of the colonizing anaerobic fungi. Colonization of perennial ryegrass (PRG) was evident within 5 min, with no consistent effect of time or wash procedure on fungal population composition. Wash procedure had no effect on population size unlike time, which had a significant effect. Colonizing fungal population size continued to increase over the incubation period after an initial lag of c. 4 min. This dynamic differs from that reported previously for rumen bacteria, where substantial colonization of PRG occurred within 5 min. The observed delay in colonization of plant material by anaerobic fungi is suggested to be primarily mediated by the time taken for fungal zoospores to locate, attach and encyst on plant material.


Subject(s)
Cattle/metabolism , Cattle/microbiology , Lolium/microbiology , Neocallimastigales/physiology , Rumen/metabolism , Rumen/microbiology , Animals , Cluster Analysis , Colony Count, Microbial , Female , Gastrointestinal Contents/microbiology , Molecular Sequence Data , Neocallimastigales/growth & development , Neocallimastigales/isolation & purification , Polymerase Chain Reaction , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...