Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 20(11)2020 Jun 08.
Article in English | MEDLINE | ID: mdl-32521754

ABSTRACT

The ability to plan a multiple-target path that goes through places considered important is desirable for autonomous mobile robots that perform tasks in industrial environments. This characteristic is necessary for inspection robots that monitor the critical conditions of sectors in thermal, nuclear, and hydropower plants. This ability is also useful for applications such as service at home, victim rescue, museum guidance, land mine detection, and so forth. Multiple-target collision-free path planning is a topic that has not been very studied because of the complexity that it implies. Usually, this issue is left in second place because, commonly, it is solved by segmentation using the point-to-point strategy. Nevertheless, this approach exhibits a poor performance, in terms of path length, due to unnecessary turnings and redundant segments present in the found path. In this paper, a multiple-target method based on homotopy continuation capable to calculate a collision-free path in a single execution for complex environments is presented. This method exhibits a better performance, both in speed and efficiency, and robustness compared to the original Homotopic Path Planning Method (HPPM). Among the new schemes that improve their performance are the Double Spherical Tracking (DST), the dummy obstacle scheme, and a systematic criterion to a selection of repulsion parameter. The case studies show its effectiveness to find a solution path for office-like environments in just a few milliseconds, even if they have narrow corridors and hundreds of obstacles. Additionally, a comparison between the proposed method and sampling-based planning algorithms (SBP) with the best performance is presented. Furthermore, the results of case studies show that the proposed method exhibits a better performance than SBP algorithms for execution time, memory, and in some cases path length metrics. Finally, to validate the feasibility of the paths calculated by the proposed planner; two simulations using the pure-pursuit controlled and differential drive robot model contained in the Robotics System Toolbox of MATLAB are presented.

2.
CienciaUAT ; 13(2): 6-17, ene.-jun. 2019. tab, graf
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1011772

ABSTRACT

RESUMEN El campo de las ecuaciones diferenciales ha cobrado auge en la actualidad por el desarrollo científico y tecnológico. Por esta situación, el estudio de nuevas metodologías para solucionarlas se ha vuelto importante. A partir de la combinación del método de Laplace Transform (LT) y el método de perturbación (PM) este trabajo presenta el método LT-PM, y su motivación se encuentra en la aplicación conocida de la LT a ecuaciones diferenciales ordinarias lineales. El objetivo de este trabajo fue presentar una modificación del método de perturbación (PM), el método de perturbación con transformada de Laplace (LT-PM), con el fin de resolver problemas perturbativos no lineales, con condiciones a la frontera definidas en intervalos finitos. La metodología consistió en aplicar LT a la ecuación diferencial por resolver y después de asumir que la solución de la misma se puede expresar como una serie de potencias de un parámetro perturbativo, se obtiene la solución del problema aplicando sistemáticamente la transformada inversa de Laplace. Los principales resultados de este trabajo se muestran a partir de dos casos de estudio presentados, donde se observa que LT-PM es potencialmente útil para encontrar soluciones múltiples de problemas no lineales. Además, LT-PM mejora la aplicabilidad del método de perturbación en algunos casos de condiciones a la frontera mixtas y de Neumann, donde PM simplemente no funciona. Con el fin de verificar la exactitud de los resultados obtenidos, se calculó su error residual cuadrático (SRE), el cual resultó muy bajo, de donde se dedujo su precisión y la potencialidad de LT-PM. Se concluye que si bien el método propuesto resulta eficiente en los casos particulares presentados, se espera que sea una herramienta potencialmente eficiente y útil para otros casos de estudio, particularmente, en aquellos relacionados con aplicaciones prácticas en ciencias e ingeniería.


ABSTRACT The field of differential equations has recently gained attention due to recent developments in science and technology. For this reason, the analysis for the use of new methodologies to solve them has become important. Based on the combination of Laplace Transform method (LT) and Perturbation Method (PM) this article pro- poses the Laplace transform-Perturbation Method (LT-PM) which finds its motivation on the application of LT to linear ordinary differential equations. The goal of this work is to propose a modification of PM - the LT-PM), in order to solve nonlinear perturbative problems with boundary conditions defined on finite intervals. The proposed methodology consisted on the application of LT to the differential equation to solve and then, assuming that its solutions can be expressed as a series of perturbative parameter powers. Thus, the solution of the problem is obtained by systematically applying the transformed inverse LT. The main results of this paper were shown through two case studies, where LT-PM is identified as potentially useful for finding multiple solutions to nonlinear problems. Additionally, the LT-PM enhances the applicability of PM, in some cases of mixed and Neumann boundary conditions, where PM is unsuitable to provide the results. With the purpose of verifying the accuracy of the obtained results, the Square Residual Error (SRE) was calculated. The resulting value was extremely low, which showed the precision and potential of LT-PM. We conclude that, although the proposed method resulted efficient for the case studies presented in this article, it is expected that LT-PM can be a potentially useful tool for other case studies. Particularly those related to the practical applications of science and engineering.

3.
Springerplus ; 3: 594, 2014.
Article in English | MEDLINE | ID: mdl-25392771

ABSTRACT

This article proposes non-linearities distribution Laplace transform-homotopy perturbation method (NDLT-HPM) to find approximate solutions for linear and nonlinear differential equations with finite boundary conditions. We will see that the method is particularly relevant in case of equations with nonhomogeneous non-polynomial terms. Comparing figures between approximate and exact solutions we show the effectiveness of the proposed method.

4.
Springerplus ; 3: 563, 2014.
Article in English | MEDLINE | ID: mdl-25332863

ABSTRACT

UNLABELLED: This work presents a direct procedure to apply Padé method to find approximate solutions for nonlinear differential equations. Moreover, we present some cases study showing the strength of the method to generate highly accurate rational approximate solutions compared to other semi-analytical methods. The type of tested nonlinear equations are: a highly nonlinear boundary value problem, a differential-algebraic oscillator problem, and an asymptotic problem. The high accurate handy approximations obtained by the direct application of Padé method shows the high potential if the proposed scheme to approximate a wide variety of problems. What is more, the direct application of the Padé approximant aids to avoid the previous application of an approximative method like Taylor series method, homotopy perturbation method, Adomian Decomposition method, homotopy analysis method, variational iteration method, among others, as tools to obtain a power series solutions to post-treat with the Padé approximant. AMS SUBJECT CLASSIFICATION: 34L30.

5.
Springerplus ; 3: 421, 2014.
Article in English | MEDLINE | ID: mdl-25157331

ABSTRACT

This article proposes Laplace Transform Homotopy Perturbation Method (LT-HPM) to find an approximate solution for the problem of an axisymmetric Newtonian fluid squeezed between two large parallel plates. After comparing figures between approximate and exact solutions, we will see that the proposed solutions besides of handy, are highly accurate and therefore LT-HPM is extremely efficient.

6.
Springerplus ; 3: 160, 2014.
Article in English | MEDLINE | ID: mdl-24790815

ABSTRACT

ABSTRACT: In this article, we propose the application of a modified Taylor series method (MTSM) for the approximation of nonlinear problems described on finite intervals. The issue of Taylor series method with mixed boundary conditions is circumvented using shooting constants and extra derivatives of the problem. In order to show the benefits of this proposal, three different kinds of problems are solved: three-point boundary valued problem (BVP) of third-order with a hyperbolic sine nonlinearity, two-point BVP for a second-order nonlinear differential equation with an exponential nonlinearity, and a two-point BVP for a third-order nonlinear differential equation with a radical nonlinearity. The result shows that the MTSM method is capable to generate easily computable and highly accurate approximations for nonlinear equations. AMS SUBJECT CLASSIFICATION: 34L30.

7.
Springerplus ; 3: 162, 2014.
Article in English | MEDLINE | ID: mdl-24741477

ABSTRACT

In this article, Perturbation Method (PM) is employed to obtain a handy approximate solution to the steady state nonlinear reaction diffusion equation containing a nonlinear term related to Michaelis-Menten of the enzymatic reaction. Comparing graphics between the approximate and exact solutions, it will be shown that the PM method is quite efficient.

SELECTION OF CITATIONS
SEARCH DETAIL
...