Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
2.
Chem Sci ; 15(16): 6151-6159, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38665533

ABSTRACT

Recently, planar and neutral tricoordinated oxygen embedded in graphene has been imaged experimentally (Nat. Commun., 2019, 10, 4570-4577). In this work, this unusual chemical species is studied utilizing a variety of state-of-the-art methods and combining periodic calculations with a fragmental approach. Several factors influencing the stability of trivalent oxygen are identified. A σ-donation and a π-backdonation mechanism between graphite and oxygen is established. π-Local aromaticity, with a delocalized 4c-2e bond involving the oxygen atom and the three nearest carbon atoms aids in the stabilization of this system. In addition, the framework in which the oxygen is embedded is crucial too to the stabilization, helping to delocalize the "extra" electron pair in the virtual orbitals. Based on the understanding gathered in this work, a set of organic molecules containing planar and neutral trivalent oxygen is theoretically proposed for the first time.

3.
Phys Chem Chem Phys ; 26(16): 12619-12627, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38597590

ABSTRACT

Low lying electronic states of Al3-, Ga3-, In3-, and Tl3- have been characterized using high level multiconfigurational quasi degenerate perturbation theory on the multiconfigurational self-consistent field. Among these species, the singlet states emerge as the predominant energy minima, displaying remarkable stability. However, within the Tl3- series, our investigation leads to the identification of the high-spin , as the most stable spin state, a result corroborated by previous experimental detection via photoelectron spectroscopy. Similarly, we have also identified the singlet state of In3- as the signal detected previously experimentally. By applying Mandado's rules and an array of aromaticity indicators, it is conclusively demonstrated that both the singlet and quintet states exhibit multiple-fold aromaticity, while the triplets exhibit conflicting aromaticity. Furthermore, this investigation highlights the significant impact of relativistic effects, as they enhance the stability of the state relative to its singlet counterpart. These findings shed new light on the electronic structures and properties of these ions, offering valuable insights into their chemical behavior and potential applications.

4.
Chemphyschem ; 25(12): e202400095, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38525872

ABSTRACT

The catalytic dehydrogenation of light alkanes is key to transform low-cost hydrocarbons to high value-added chemicals. Although Pt is extremely efficient at catalyzing this reaction, it suffers from coke formation that deactivates the catalyst. Dopants such as Sn are widely used to increase the stability and lifetime of Pt. In this work, the dehydrogenation reaction of ethane catalyzed by Pt3 and Pt2X (X=Si, Ge, Sn, P and Al) nanocatalysts has been studied computationally by means of density functional calculations. Our results show how the presence of dopants in the nanocluster structure affects its electronic properties and catalytic activity. Exploration of the potential energy surfaces show that non-doped catalyst Pt3 present low selectivity towards ethylene formation, where acetylene resulting from double dehydrogenation reaction will be obtained as a side product (in agreement with the experimental evidence). On the contrary, the inclusion of Si, Ge, Sn, P or Al as dopant agents implies a selectivity enhancement, where acetylene formation is not energetically favoured. These results demonstrate the effectiveness of such dopant elements for the design of Pt-based catalysts on ethane dehydrogenation.

5.
Sci Rep ; 12(1): 13032, 2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35906454

ABSTRACT

Recently, the edges of single-layer graphene have been experimentally doped with silicon atoms by means of scanning transmission electron microscopy. In this work, density functional theory is applied to model and characterize a wide range of experimentally inspired silicon doped zigzag-type graphene edges. The thermodynamic stability is assessed and the electronic and magnetic properties of the most relevant edge configurations are unveiled. Importantly, we show that silicon doping of graphene edges can induce a reversion of the spin orientation on the adjacent carbon atoms, leading to novel magnetic properties with possible applications in the field of spintronics.

7.
J Chem Phys ; 156(17): 174301, 2022 May 07.
Article in English | MEDLINE | ID: mdl-35525659

ABSTRACT

The high catalytic activity of Pt is accompanied by a high affinity for CO, making it extremely susceptible to poisoning. Such CO poisoning limits the use of proton exchange membrane fuel cells. In this work, using global minima search techniques and exhaustive electronic structure characterization, the dopant concentration is pinpointed as a crucial factor to improve the CO tolerance of Pt catalysts. By investigating the PtGe nanoclusters of different sizes and compositions, we found that, for those clusters with roughly the same amount of Pt and Ge, the binding to CO is weakened significantly. The uniqueness of the PtGe equimolar clusters is traced down to the electronic effects. The strong covalency and electrostatic stabilization arising from the advantageous Pt-Ge mixing make the equimolar clusters highly resistant toward CO poisoning and therefore more durable. Importantly, the novel catalysts not only are more resistant to deactivation but also remain catalytically active toward hydrogen oxidation. Representative clusters are additionally deposited on graphene with a pentagon-octagon-pentagon (5-8-5) reconstructed divacancy. The remarkable results of free-standing clusters hold true for surface mounted clusters, in which the interaction with CO is dramatically weakened for those compounds with a Pt:Ge ratio of 1:1. Our results demonstrate that Ge can be a promising alloying agent to mitigate the deactivation of Pt and that the dopant concentration is a critical factor in the design of advanced catalysts.

8.
J Phys Chem Lett ; 13(10): 2264-2272, 2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35239345

ABSTRACT

Plasmonic catalysis in the colloidal phase requires robust surface ligands that prevent particles from aggregation in adverse chemical environments and allow carrier flow from reagents to nanoparticles. This work describes the use of a water-soluble conjugated polymer comprising a thiophene moiety as a surface ligand for gold nanoparticles to create a hybrid system that, under the action of visible light, drives the conversion of the biorelevant NAD+ to its highly energetic reduced form NADH. A combination of advanced microscopy techniques and numerical simulations revealed that the robust metal-polymer heterojunction, rich in sulfonate functional groups, directs the interaction of electron-donor molecules with the plasmonic photocatalyst. The tight binding of polymer to the gold surface precludes the need for conventional transition-metal surface cocatalysts, which were previously shown to be essential for photocatalytic NAD+ reduction but are known to hinder the optical properties of plasmonic nanocrystals. Moreover, computational studies indicated that the coating polymer fosters a closer interaction between the sacrificial electron-donor triethanolamine and the nanoparticles, thus enhancing the reactivity.


Subject(s)
Gold , Metal Nanoparticles , Catalysis , Gold/chemistry , Light , Metal Nanoparticles/chemistry , Polymers
9.
ACS Omega ; 6(25): 16612-16622, 2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34235333

ABSTRACT

II-VI semiconducting materials are gaining attention due to their optoelectronic properties. Moreover, the addition of transition metals, TMs, might give them magnetic properties. The location and distance of the TM are crucial in determining such magnetic properties. In this work, we focus on small hollow (ZnS)12 nanoclusters doped with TMs. Because (ZnS)12 is a cage-like spheroid, the cavity inside the structure allows for the design of endohedral compounds resembling those of C60. Previous studies theoretically predicted that the first-row TM(ZnS)12 endohedral compounds were thermodynamically unstable compared to the surface compounds, where the TM atom is located at the surface of the cluster. The transition states connecting both structure families were calculated, and the estimated lifetimes of these compounds were predicted to be markedly small. However, in such works dispersion effects were not taken into account. Here, in order to check for the influence of dispersion on the possible stabilization of the desired TM(ZnS)12 endohedrally doped clusters, several functionals are tested and compare to MP2. It is found that the dispersion effects play a very important role in determining the location of the metals, especially in those TMs with the 4s3d shell half-filled or completely filled. In addition, a complete family of TM doped (ZnS)12 nanoclusters is explored using ab initio molecular dynamics simulations and local minima optimizations that could guide the experimental synthesis of such compounds. From the magnetic point of view, the Cr(7S)@(ZnS)12 compound is the most interesting case, since the endohedral isomer is predicted to be the global minimum. Moreover, molecular dynamics simulations show that when the Cr atom is located at the surface of the cluster, it spontaneously migrates toward the center of the cavity at room temperature.

10.
Chemphyschem ; 22(15): 1603-1610, 2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34058042

ABSTRACT

The vulnerability towards CO poisoning is a major drawback affecting the efficiency and long-term performance of platinum catalysts in fuel cells. In the present work, by a combination of density functional theory calculations and mass spectrometry experiments, we test and explain the promotional effect of Ge on Pt catalysts with higher resistance to deactivation via CO poisoning. A thorough exploration of the configurational space of gas-phase Ptn + and GePtn-1 + (n=5-9) clusters using global minima search techniques and the subsequent electronic structure analysis reveals that germanium doping reduces the binding strength between Pt and CO by hindering the 2π-back-donation. Importantly, the clusters remain catalytically active towards H2 dissociation. The ability of Ge to weaken the Pt-CO interaction was confirmed by mass spectrometry experiments. Ge can be a promising alloying agent to tune the selectivity and improve the durability of Pt particles, thus opening the way to novel catalytic alternatives for fuel cells.

12.
J Phys Chem Lett ; 10(1): 20-25, 2019 Jan 03.
Article in English | MEDLINE | ID: mdl-30557024

ABSTRACT

Partially oxidized surfaces of hexagonal boron nitride (hBN) and several metal borides are unexpectedly excellent catalysts for oxidative dehydrogenation of alkanes to olefins, but the nature of the active site(s) on these B-containing interfaces remains elusive. We characterize the surface of the partially oxidized B-rich hBN surface under reaction conditions from first principles. The interface has thermal access to multiple different stoichiometries and multiple structures of each stoichiometry. The size of the thermal ensemble is composition-dependent. The phase diagram of the interface constructed on the basis of the statistical ensembles of many accessible states is very different from the one based on global minima. Phase boundaries shift and blur, and phases consist of several stoichiometries and structures. The BO layer transiently exposes the reactive -B═O motifs in the metastable states. The fluxionality and structural diversity emerging under reaction conditions must be taken into account in theoretically descriptions of the catalytic interface.

13.
Small ; 14(38): e1801771, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30146718

ABSTRACT

Building materials from the atom up is the pinnacle of materials fabrication. Until recently the only platform that offered single-atom manipulation was scanning tunneling microscopy. Here controlled manipulation and assembly of a few atom structures are demonstrated by bringing together single atoms using a scanning transmission electron microscope. An atomically focused electron beam is used to introduce Si substitutional defects and defect clusters in graphene with spatial control of a few nanometers and enable controlled motion of Si atoms. The Si substitutional defects are then further manipulated to form dimers, trimers, and more complex structures. The dynamics of a beam-induced atomic-scale chemical process is captured in a time-series of images at atomic resolution. These studies suggest that control of the e-beam-induced local processes offers the next step toward atom-by-atom nanofabrication, providing an enabling tool for the study of atomic-scale chemistry in 2D materials and fabrication of predefined structures and defects with atomic specificity.

14.
Annu Rev Phys Chem ; 69: 377-400, 2018 04 20.
Article in English | MEDLINE | ID: mdl-29490204

ABSTRACT

When small clusters are studied in chemical physics or physical chemistry, one perhaps thinks of the fundamental aspects of cluster electronic structure, or precision spectroscopy in ultracold molecular beams. However, small clusters are also of interest in catalysis, where the cold ground state or an isolated cluster may not even be the right starting point. Instead, the big question is: What happens to cluster-based catalysts under real conditions of catalysis, such as high temperature and coverage with reagents? Myriads of metastable cluster states become accessible, the entire system is dynamic, and catalysis may be driven by rare sites present only under those conditions. Activity, selectivity, and stability are highly dependent on size, composition, shape, support, and environment. To probe and master cluster catalysis, sophisticated tools are being developed for precision synthesis, operando measurements, and multiscale modeling. This review intends to tell the messy story of clusters in catalysis.

15.
ACS Nano ; 12(3): 2211-2221, 2018 03 27.
Article in English | MEDLINE | ID: mdl-29393628

ABSTRACT

We use simple acid-base chemistry to control the valency in self-assembled monolayers of two different carboranedithiol isomers on Au{111}. Monolayer formation proceeds via Au-S bonding, where manipulation of pH prior to or during deposition enables the assembly of dithiolate species, monothiol/monothiolate species, or combination. Scanning tunneling microscopy (STM) images identify two distinct binding modes in each unmodified monolayer, where simultaneous spectroscopic imaging confirms different dipole offsets for each binding mode. Density functional theory calculations and STM image simulations yield detailed understanding of molecular chemisorption modes and their relation with the STM images, including inverted contrast with respect to the geometric differences found for one isomer. Deposition conditions are modified with controlled equivalents of either acid or base, where the coordination of the molecules in the monolayers is controlled by protonating or deprotonating the second thiol/thiolate on each molecule. This control can be exercised during deposition to change the valency of the molecules in the monolayers, a process that we affectionately refer to as the "can-can." This control enables us to vary the density of molecule-substrate bonds by a factor of 2 without changing the molecular density of the monolayer.

16.
J Phys Chem Lett ; 8(6): 1224-1228, 2017 Mar 16.
Article in English | MEDLINE | ID: mdl-28247758

ABSTRACT

Two-dimensional (2D) phases of boron are rare and unique. Here we report a new 2D all-boron phase (named the π phase) that can be grown on a W(110) surface. The π phase, composed of four-membered rings and six-membered rings filled with an additional B atom, is predicted to be the most stable on this support. It is characterized by an outstanding stability upon exfoliation off of the W surface, and unusual electronic properties. The chemical bonding analysis reveals the metallic nature of this material, which can be attributed to the multicentered π-bonds. Importantly, the calculated conductivity tensor is anisotropic, showing larger conductivity in the direction of the sheet that is in-line with the conjugated π-bonds, and diminished in the direction where the π-subsystems are connected by single σ-bonds. The π-phase can be viewed as an ultrastable web of aligned conducting boron wires, possibly of interest to applications in electronic devices.

17.
Phys Chem Chem Phys ; 18(17): 11644-52, 2016 04 28.
Article in English | MEDLINE | ID: mdl-26414992

ABSTRACT

Transition-metal hydrides represent a unique class of compounds, which are essential for catalysis, organic synthesis, and hydrogen storage. In this work we study IrH5(PPh3)2, (RuH5(P(i)Pr3)2)(-), (OsH5(P(i)Pr3)2)(-), and OsH4(PPhMe2)3 polyhydride complexes, inspired by the recent discovery of the σ-aromatic PtZnH5(-) cluster anion. The distinctive feature of these molecules is that, like in the PtZnH5(-) cluster, the metal is five-fold coordinated in-plane, and holds additional ligands at the axial positions. This work shows that the unusual coordination in these compounds indeed can be explained by σ-aromaticity in the pentagonal arrangement, stabilized by the atomic orbitals on the metal. Based on this newly elucidated bonding principle, we additionally propose a new family of polyhydrides that display a uniquely high coordination. We also report the first indications of how aromaticity may impact the reactivity of these molecules.

18.
J Mol Model ; 20(6): 2227, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24908334

ABSTRACT

ZnS and CdS small nanoclusters have been predicted to trap alkali metals and halogen atoms. However would this kind of nanocompounds be able to encapsulate dianions and dications? This would be very interesting from an experimental point of view, since it would allow the isolation of such divalent ions. Moreover, the resulting endohedral complexes would serve as building blocks for new cluster-assembled materials, with enhanced stability arising from the electrostatic interaction between the incarcerated ions. In this work we have studied the structure and stability of (X@(CdS)i)(±2) with X = Be, Mg, Ca, O, S, Se and i = 9, 12, 15, 16 on the basis of Density Functional Theory and Quantum Molecular Dynamics simulations. Most of the nanoclusters are found to trap both chalcogen and alkaline earth atoms. Furthermore, the chalcogen doped clusters are calculated to be both thermodynamically and thermally stable. However, only a few of alkaline earth metal doped structures are predicted to be thermally stable. Therefore, the charge of the dopant atom appears to be crucial in the endohedral doping. Additionally, the absorption spectra of the title compounds have been simulated by means of Time Dependent Density Functional Theory (TDDFT) calculations. The calculated optical features show a blueshift with respect to the bulk CdS wurtzite. Furthermore, doping modifies notably the optical spectra of nanoclusters, as the absorption spectra shift to lower energies upon encapsulation.

19.
J Phys Chem A ; 118(24): 4309-14, 2014 Jun 19.
Article in English | MEDLINE | ID: mdl-24841137

ABSTRACT

The global minima of the cluster anions with the generic chemical formula (XAl12)²â», where X = Be, Mg, Ca, Sr, Ba, and Zn, are determined by an extensive search of their potential energy surfaces using the Gradient Embedded Genetic Algorithm (GEGA). All the characterized global minima have an icosahedral-like structure, resembling that of the Al13⁻ cluster. These cages comprise closed-shell electronic configurations with 40 electrons, therefore, in accordance to the jellium model, they are predicted to be highly stable and amenable to experimental detection. The two preferred sites for the dopant species, at the center and at surface of the icosahedral cage, are stabilized depending on the atomic radius of X. Thus, while the small dopants (X = Be, Zn) sit preferably at the center of the cage, the preferred site for X = Mg, Ca, Sr, and Ba is at the surface. Since these dianions are not stable towards electron detachment, one Li cation is added in order to yield stable systems. Our computations show that in the global minimum form of Li(XAl12)⁻, the lithium cation, ionically bonded to the Al atoms, does not change the structure of the (XAl12)²â» core.

20.
Phys Chem Chem Phys ; 15(25): 10350-7, 2013 Jul 07.
Article in English | MEDLINE | ID: mdl-23677285

ABSTRACT

The origin of the high directionality of halogen bonding was investigated quantum chemically by a detailed comparison of typical adducts in two different orientations: linear (most stable) and perpendicular. Energy decomposition analyses revealed that the synergy between charge-transfer interactions and Pauli repulsion are the driving forces for the directionality, while electrostatic contributions are more favourable in the less-stable, perpendicular orientation.

SELECTION OF CITATIONS
SEARCH DETAIL
...