Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
FEMS Yeast Res ; 21(5)2021 07 24.
Article in English | MEDLINE | ID: mdl-34191008

ABSTRACT

Beyond the production of positive aromas during alcoholic fermentation, Saccharomyces cerevisiae metabolism also results in the formation of volatile compounds detrimental to wine quality, including a wide range of volatile sulfur compounds (VSCs). The formation of these VSCs during wine fermentation is strongly variable and depends on biological and environmental factors. First, the comparison of the VSCs profile of 22 S. cerevisiae strains provided a comprehensive overview of the intra-species diversity in VSCs production: according to their genetic background, strains synthetized from 1 to 6 different sulfur molecules, in a 1- to 30-fold concentration range. The impact of fermentation parameters on VSCs production was then investigated. We identified yeast assimilable nitrogen, cysteine, methionine and pantothenic acid contents - but not SO2 content - as the main factors modulating VSCs production. In particular, ethylthioacetate and all the VSCs deriving from methionine catabolism displayed a maximal production at yeast assimilable nitrogen concentrations around 250 mg/L; pantothenic acid had a positive impact on compounds deriving from methionine catabolism through the Ehrlich pathway but a negative one on the production of thioesters. Overall, these results highlight those factors to be taken into account to modulate the formation of negative VSCs and limit their content in wines.


Subject(s)
Sulfur Compounds , Wine , Fermentation , Methionine , Nitrogen , Pantothenic Acid , Saccharomyces cerevisiae/genetics , Wine/analysis
2.
Biochim Biophys Acta Gene Regul Mech ; 1863(9): 194595, 2020 09.
Article in English | MEDLINE | ID: mdl-32565401

ABSTRACT

Post-transcriptional factors importantly contribute to the rapid and coordinated expression of the multiple genes required for the adaptation of living organisms to environmental stresses. In the model eukaryote Saccharomyces cerevisiae, a conserved mRNA-binding protein, known as Cth2, modulates the metabolic response to iron deficiency. Cth2 is a tandem zinc-finger (TZF)-containing protein that co-transcriptionally binds to adenine/uracil-rich elements (ARE) present in the 3'-untranslated region of iron-related mRNAs to promote their turnover. The nuclear binding of Cth2 to mRNAs via its TZFs is indispensable for its export to the cytoplasm. Although Cth2 nucleocytoplasmic transport is essential for its regulatory function, little is known about the recruitment of the mRNA degradation machinery. Here, we investigate the sequential assembly of mRNA decay factors during Cth2 shuttling. By using an enzymatic in vivo proximity assay called M-track, we show that Cth2 associates to the RNA helicase Dhh1 and the deadenylase Pop2/Caf1 before binding to its target mRNAs. The recruitment of Dhh1 to Cth2 requires the integrity of the Ccr4-Pop2 deadenylase complex, whereas the interaction between Cth2 and Pop2 needs Ccr4 but not Dhh1. M-track assays also show that Cth2-binding to ARE-containing mRNAs is necessary for the interaction between Cth2 and the exonuclease Xrn1. The importance of these interactions is highlighted by the specific growth defect in iron-deficient conditions displayed by cells lacking Dhh1, Pop2, Ccr4 or Xrn1. These results exemplify the stepwise process of assembly of different mRNA decay factors onto an mRNA-binding protein during the mechanism of post-transcriptional regulation.


Subject(s)
RNA Stability , RNA, Messenger/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Tristetraprolin/metabolism , Adaptation, Biological , DEAD-box RNA Helicases/metabolism , Gene Expression Regulation, Fungal , Iron/metabolism , Iron Deficiencies , Iron-Regulatory Proteins/genetics , Iron-Regulatory Proteins/metabolism , RNA, Messenger/metabolism , Saccharomyces cerevisiae Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...