Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Int J Exp Pathol ; 99(4): 180-188, 2018 08.
Article in English | MEDLINE | ID: mdl-30198103

ABSTRACT

Carnosine (ß-alanyl-L-histidine) is synthesized in the olfactory system, has antioxidant activity as a scavenger of free radicals and has been reported to have neuroprotective action in diseases which have been attributed to oxidative damage. In neurodegenerative disorders, such as Parkinson's and Alzheimer's diseases, impairment of olfactory function has been described. Vanadium derivatives are environmental pollutants, and its toxicity has been associated with oxidative stress. Vanadium toxicity on the olfactory bulb was reported previously. This study investigates the neuroprotective effect of carnosine on the olfactory bulb in a mice model of vanadium inhalation. Male mice were divided into four groups: vanadium pentoxide (V2 O5 ) [0.02 mol/L] inhalation for one hour twice a week; V2 O5 inhalation plus 1 mg/kg of carnosine administered daily; carnosine only, and the control group that inhaled saline. The olfactory function was evaluated using the odorant test. Animals were sacrificed four weeks after exposure. The olfactory bulbs were dissected and processed using the rapid Golgi method; cytological and ultrastructural analysis was performed and malondialdehyde (MDA) concentrations were measured. The results showed evidence of olfactory dysfunction caused by vanadium exposure and also an increase in MDA levels, loss of dendritic spines and necrotic neuronal death in the granule cells. But, in contrast, vanadium-exposed mice treated with carnosine showed an increase in dendritic spines and a decrease in neuronal death and in MDA levels when compared with the group exposed to vanadium without carnosine. These results suggest that dendritic spine loss and ultrastructural alterations in the granule cells induced by vanadium are mediated by oxidative stress and that carnosine may modulate the neurotoxic vanadium action, improving the olfactory function.


Subject(s)
Carnosine/pharmacology , Neuroprotective Agents/pharmacology , Olfactory Bulb/drug effects , Spine/pathology , Animals , Disease Models, Animal , Neurotoxicity Syndromes/drug therapy , Olfactory Bulb/pathology , Oxidative Stress/drug effects , Spine/drug effects , Vanadium Compounds/pharmacology
2.
Toxicol Pathol ; 43(2): 282-91, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25492423

ABSTRACT

Neurodegenerative disorders, such as Parkinson's and Alzheimer's diseases, have olfaction impairment. These pathologies have also been linked to environmental pollutants. Vanadium is a pollutant, and its toxic mechanisms are related to the production of oxidative stress. In this study, we evaluated the effects of inhaled vanadium on olfaction, the olfactory bulb antioxidant, through histological and ultrastructural changes in granule cells. Mice in control group were made to inhale saline; the experimental group inhaled 0.02-M vanadium pentoxide (V2O5) for 1 hr twice a week for 4 weeks. Animals were sacrificed at 1, 2, 3, and 4 weeks after inhalation. Olfactory function was evaluated by the odorant test. The activity of glutathione peroxidase (GPx) and glutathione reductase (GR) was assayed in olfactory bulbs and processed for rapid Golgi method and ultrastructural analysis. Results show that olfactory function decreased at 4-week vanadium exposure; granule cells showed a decrease in dendritic spine density and increased lipofuscin, Golgi apparatus vacuolation, apoptosis, and necrosis. The activity of GPx and GR in the olfactory bulb was increased compared to that of the controls. Our results demonstrate that vanadium inhalation disturbs olfaction, histology, and the ultrastructure of the granule cells that might be associated with oxidative stress, a risk factor in neurodegenerative diseases.


Subject(s)
Environmental Pollutants/toxicity , Olfactory Bulb/metabolism , Olfactory Bulb/pathology , Vanadium Compounds/administration & dosage , Vanadium Compounds/toxicity , Administration, Inhalation , Animals , Antioxidants/metabolism , Apoptosis/drug effects , Dendritic Spines/drug effects , Dendritic Spines/pathology , Glutathione Peroxidase/metabolism , Glutathione Reductase/metabolism , Male , Mice , Necrosis , Olfactory Bulb/drug effects , Smell/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...