Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Access Microbiol ; 6(5)2024.
Article in English | MEDLINE | ID: mdl-38868377

ABSTRACT

Many Gram-positive spore-forming rhizobacteria of the genus Bacillus show potential as biocontrol biopesticides that promise improved sustainability and ecological safety in agriculture. Here, we present a draft-quality genome sequence for Bacillus velezensis EU07, which shows growth-promotion in tomato plants and biocontrol against Fusarium head blight. We found that the genome of EU07 is almost identical to that of the commercially used strain QST713, but identified 46 single-nucleotide differences that distinguish these strains from each other. The availability of this genome sequence will facilitate future efforts to unravel the genetic and molecular basis for EU07's beneficial properties.

2.
Plants (Basel) ; 11(15)2022 Jul 31.
Article in English | MEDLINE | ID: mdl-35956478

ABSTRACT

Fusarium graminearum (Fg) causes Fusarium head blight (FHB) disease in wheat and barley. This pathogen produces mycotoxins including deoxynivalenol (DON), the T-2 and fumorisin B1. Translocation of the mycotoxins in grains causes important losses in yields and contributes to serious health problems in humans and livestock. We tested the Bacillus strains, two commercial, QST713 (Serenade®) and FZB24 (TAEGRO®) and one non-commercial strain EU07 as microbial biological control agents against the F. graminearum strain Fg-K1-4 both in vitro and in planta. The EU07 strain showed better performance in suppressing the growth of Fg-K1-4. Cell-free bacterial cultures displayed significant antagonistic activity on Fg-K1-4. Remarkably, heat and proteinase K treatment of bacterial broths did not reduce the antagonistic activity of Bacillus cultures. DON assays showed that Bacillus strain was not affected by the presence of DON in the media. Leaf and head infection assays using Brachypodium distachyon (Bd-21) indicated that EU07 inhibits Fg-K1-4 growth in vivo and promotes plant growth. Overall, the EU07 strain performed better, indicating that it could be explored for the molecular investigations and protection of cereal crops against FHB disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...