Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Front Med (Lausanne) ; 10: 1213067, 2023.
Article in English | MEDLINE | ID: mdl-37396913

ABSTRACT

Functional bowel disorder (FBD) is a common gastrointestinal disease syndrome characterized by dysmotility and secretion without known organic lesions. The pathogenesis of FBD is still unclear. In recent years, with the rise of neurogastroenterology, it has initially revealed its close relationship with the "brain-gut axis." Transcranial magnetic stimulation (TMS) is a technique for detecting and treating the nervous system, that is characterized by non-invasiveness and painlessness. TMS plays an important role in the diagnosis and treatment of diseases, and provides a new method for the treatment of FBD. In this paper, we summarized and analyzed the research progress of using TMS therapy applied to patients with irritable bowel syndrome and functional constipation by domestic and foreign scholars in recent years by means of literature search, and found that TMS therapy could improve the intestinal discomfort and accompanying mental symptoms in patients with FBD.

2.
Adv Sci (Weinh) ; 10(20): e2207536, 2023 07.
Article in English | MEDLINE | ID: mdl-37119478

ABSTRACT

Fibrous scaffolds have shown their advantages in tissue engineering, such as peripheral nerve regeneration, while most of the existing fiber-shaped scaffolds are with simple structures, and the in vitro performance for nerve regeneration lacks systematic analysis. Here, novel nerve-on-a-chip derived biomimicking microfibers for peripheral nerve regeneration are presented. The microfibers with controllable core-shell structures and functionalities are generated through capillary microfluidic devices. By integrating these microfibers into a multitrack-architectured chip, and coculturing them with nerve cells as well as gradient bioactive elements, the nerve-on-a-chip with the capabilities of systematically assessing the performances of nerve fiber formation in the hollow microfibers at in vitro level is constructed. Based on a rat sciatic nerve injury model, the rapid promotion ability is demonstrated of optimized microfibers in nerve regeneration and function recovery in vivo, which implies the credibility of the nerve-on-a-chip on biomimicking microfibers evaluation for peripheral nerve regeneration. Thus, it is convinced that the organ-on-a-chip will undoubtedly open up a new chapter in evaluating biological scaffolds for in vivo tissue engineering.


Subject(s)
Nerve Regeneration , Tissue Engineering , Rats , Animals , Lab-On-A-Chip Devices
3.
Am J Cancer Res ; 13(1): 261-275, 2023.
Article in English | MEDLINE | ID: mdl-36777510

ABSTRACT

Hepatocellular carcinoma (HCC) is a malignant tumor of hepatocytes. It is a common malignant tumor of the digestive system that often has initially hidden presentation followed by rapid progression. There are no obvious symptoms in the early stage of HCC. When diagnosed, most patients have locally advanced tumor or distant metastasis; therefore, HCC is difficult to treat and only supportive and symptomatic treatment is adopted. The prognosis is poor and survival time is short. How to effectively treat HCC is important clinically. In recent years, advances in medical technology have resulted in comprehensive treatment methods based on surgery.

4.
Fetal Pediatr Pathol ; 42(3): 488-491, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36345052

ABSTRACT

Background: Meckel's diverticulum (MD) is usually a simple tubular-shaped diverticulum. Case report: We describe a MD with multiple complex terminal sprouts in a child found incidentally during an appendectomy for appendicitis. The MD was resected, and the child recovered well. Conclusion: MD may show multiple sprouts. There was no additional clinical consequence in this child with the malformed MD.


Subject(s)
Appendicitis , Meckel Diverticulum , Humans , Child , Meckel Diverticulum/complications , Meckel Diverticulum/diagnosis , Meckel Diverticulum/surgery , Appendicitis/surgery , Appendectomy
5.
Adv Sci (Weinh) ; 10(4): e2203296, 2023 02.
Article in English | MEDLINE | ID: mdl-36494181

ABSTRACT

Peripheral nerve injury is a serious medical problem with limited surgical and clinical treatment options. It is of great significance to integrate multiple guidance cues in one platform of nerve guidance conduits (NGCs) to promote axonal elongation and functional recovery. Here, a multi-functional NGC is constructed to promote nerve regeneration by combining ordered topological structure, density gradient of biomacromolecular nanoparticles, and controlled delivery of biological effectors to provide the topographical, haptotactic, and biological cues, respectively. On the surface of aligned polycaprolactone nanofibers, a density gradient of bioactive nanoparticles capable of delivering recombinant human acidic fibroblast growth factor is deposited. On the graded scaffold, the proliferation of Schwann cells is promoted, and the directional extension of neurites from both PC12 cells and dorsal root ganglions is improved in the direction of increasing particle density. After being implanted in vivo for 6 and 12 weeks to repair a 10-mm rat sciatic nerve defect, the NGC promotes axonal elongation and remyelination, achieving the regeneration of the nerve not only in anatomical structure but also in functional recovery. Taken together, the NGC provides a favorable microenvironment for peripheral nerve regeneration and holds great promise for realizing nerve repair with an efficacy close to autograft.


Subject(s)
Nanoparticles , Sciatic Nerve , Rats , Animals , Humans , Axons , Tissue Scaffolds/chemistry , Nerve Regeneration
6.
Bioact Mater ; 21: 511-519, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36185737

ABSTRACT

Long-range peripheral nerve defect is a severe and worldwide disease. With the increasing development of tissue engineering, the excellent ability of nerve extracellular matrix (ECM) in peripheral nerve injury (PNI) has been widely studied and verified. Here, we present a novel microtube that contains gradient decellularized porcine sciatic nerve ECM hydrogel (pDScNM-gel) from microfluidics for sciatic nerve regeneration. The pDScNM is confirmed to enhance cell proliferation and migration, and improve the axon growth of primary dorsal root ganglions (DRGs) in a concentration-related manner. These behaviors were also achieved when cells were co-cultured in a gradient pDScNM microtube. The in vivo sciatic nerve regeneration and functional recovery were also demonstrated by assembling the gradient pDScNM microtubes with a medical silicon tube. These results indicated that the microtubes with gradient pDScNM could act as a promising alternative for repairing peripheral nerve defects and showed great potential in clinical use.

7.
Front Med (Lausanne) ; 10: 1249672, 2023.
Article in English | MEDLINE | ID: mdl-38188338

ABSTRACT

Objective: This study investigates the effectiveness of repetitive transcranial magnetic stimulation (rTMS) as a biophysical therapy for alleviating symptoms of functional bowel disorder (FBD) and associated psychological symptoms by targeting the brain-gut axis. Methods: We conducted a comparative analysis involving 226 subjects, comprising the FBD group (n = 113) and a healthy control group (n = 113). Within the FBD group, participants were further divided into those who received rTMS therapy (FBD treatment group, n = 63) and those who did not (FBD control group, n = 50). The FBD treatment group was subcategorized based on the number of rTMS treatments received. We evaluated various factors, including gender, age, monthly household income, daily activity level, and sleep quality, as potential risk factors for FBD. Severity assessments of FBD and associated symptoms (constipation, anxiety, depression, and somatization disorders) were conducted using validated scales before and after treatment. Results: Our findings revealed a higher incidence of FBD in women, with most cases emerging at age 50 or older. We identified lower monthly household income, reduced daily activity levels, and poorer sleep quality as factors associated with a higher likelihood of FBD. FBD patients exhibited higher scores for constipation, anxiety, depression, and somatization disorders compared to healthy controls. rTMS therapy was effective in reducing gastrointestinal symptoms, anxiety, depression, and somatization disorders among FBD patients. Notably, the extent of improvement was positively correlated with the number of rTMS sessions. No adverse effects were observed during the study. Conclusion: Our study underscores the efficacy of biophysical therapy, specifically repetitive transcranial magnetic stimulation, in mitigating FBD symptoms and associated psychological distress. The treatment's effectiveness is positively linked to the frequency of rTMS sessions.

8.
Front Biosci (Landmark Ed) ; 27(10): 297, 2022 10 31.
Article in English | MEDLINE | ID: mdl-36336870

ABSTRACT

Hashimoto's thyroiditis (HT) is the most common autoimmune disease involving the thyroid gland. HT often clinically manifest as hypothyroidism due to the destruction of thyroid cells mediated by humoral and cellular immunity. The pathogenesis of HT is a complex process in which environmental factors, hereditary inclination, trace elements immune factors, cytokines, and DNA and miRNA all play an important role. Herein, we summarize the precision factors involved in the pathogenesis of HT and offer an update over the past 5 years to provide a theoretical basis for further investigation of the relevant targets for HT treatment.


Subject(s)
Autoimmune Diseases , Hashimoto Disease , Hypothyroidism , Humans , Hashimoto Disease/genetics , Biomarkers
9.
Nat Chem Biol ; 18(11): 1253-1262, 2022 11.
Article in English | MEDLINE | ID: mdl-36229681

ABSTRACT

Fungal transcription factor Upc2 senses ergosterol levels and regulates sterol biosynthesis and uptake. Constitutive activation of Upc2 causes azole resistance in Candida species. We determined the structure of ergosterol-bound Upc2, revealing the ligand specificity and transcriptional regulation. Ergosterol binding involves conformational changes of the ligand-binding domain, creating a shape-complementary hydrophobic pocket. The conserved helix α12 and glycine-rich loop are critical for sterol recognition by forming the pocket wall. The mutations of the glycine-rich loop inhibit ligand binding by steric clashes and constitutively activate Upc2. The translocation of Upc2 is regulated by Hsp90 chaperone in a sterol-dependent manner. Ergosterol-bound Upc2 associates with Hsp90 using the C-terminal tail, which retains the inactive Upc2 in the cytosol. Ergosterol dissociation induces a conformational change of the C-terminal tail, releasing Upc2 from Hsp90 for nuclear transport by importin α. The understanding of the regulatory mechanism provides an antifungal target for the treatment of azole-resistant Candida infections.


Subject(s)
Antifungal Agents , Azoles , Azoles/pharmacology , Antifungal Agents/pharmacology , Drug Resistance, Fungal/genetics , Sterols , Ligands , alpha Karyopherins/genetics , alpha Karyopherins/metabolism , Ergosterol/genetics , Ergosterol/metabolism , Transcription Factors/metabolism , HSP90 Heat-Shock Proteins/metabolism , Glycine/metabolism , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal
10.
Front Pharmacol ; 13: 924695, 2022.
Article in English | MEDLINE | ID: mdl-35694264

ABSTRACT

Intestinal ischemia-reperfusion (I/R) is a common pathophysiological process, which can occur in many conditions such as acute enteric ischemia, severe burns, small intestinal transplantation, etc,. Ischemia-reperfusion of the intestine is often accompanied by distal organ injury, especially liver injury. This paper outlined the signal pathways and cytokines involved in acute liver injury induced by intestinal I/R: the NF-κB Signaling Pathway, the P66shc Signaling Pathway, the HMGB1 Signaling Pathway, the Nrf2-ARE Signaling Pathway, the AMPK-SIRT-1 Signaling Pathway and other cytokines, providing new ideas for the prevention and treatment of liver injury caused by reperfusion after intestinal I/R.

11.
Oxid Med Cell Longev ; 2022: 2151191, 2022.
Article in English | MEDLINE | ID: mdl-35633886

ABSTRACT

Skeletal muscle is one of the largest organs in the body and is essential for maintaining quality of life. Loss of skeletal muscle mass and function can lead to a range of adverse consequences. The gut microbiota can interact with skeletal muscle by regulating a variety of processes that affect host physiology, including inflammatory immunity, protein anabolism, energy, lipids, neuromuscular connectivity, oxidative stress, mitochondrial function, and endocrine and insulin resistance. It is proposed that the gut microbiota plays a role in the direction of skeletal muscle mass and work. Even though the notion of the gut microbiota-muscle axis (gut-muscle axis) has been postulated, its causal link is still unknown. The impact of the gut microbiota on skeletal muscle function and quality is described in detail in this review.


Subject(s)
Gastrointestinal Microbiome , Gastrointestinal Microbiome/physiology , Muscle, Skeletal/physiology , Quality of Life
12.
Drug Deliv ; 26(1): 393-403, 2019 Dec.
Article in English | MEDLINE | ID: mdl-30929532

ABSTRACT

Our previous work indicates the lymphatic network and perivascular spaces or tissues might be involved in the facial intradermal brain-targeted delivery of Evans blue (EB). In this article, we presented the detailed involvement of both, and the linkage between lymphatic network and perivascular spaces or tissues. The in-vivo imaging, the trigeminal transection and immunohistochemistry were used. In-vivo imaging indicated intradermal injection in the mystacial pad (i.d.) delivered EB into the brain at 2-, 6- and 24 h, while intranasal injection (i.n.) delivered EB into the rostral head and intravenous injection (i.v.) diffused EB weakly into the brain. Trigeminal perineurial and epineurial EB occurred along the perivascular spaces or tissues and along brain vessels. EB diffused into the lymphatic vessels and submandibular lymph nodes. Moreover, perineurial and epineurial EB co-located or overlaid with Lyve1 immuno-reactivity and VEGF antibody, and lymphatic network connected with perivascular spaces or tissues, suggesting lymphatic system-perivascular spaces might involve in the EB delivery with i.d. The trigeminal transection reduced the trigeminal epineurial and perineurial EB and brain EB along vessels. EB diffused in the fasciculus and the perineurium, blood and lymphatic vessels in the mystacial pad, mystacial EB overlaid VEGF or Lyve1 antibody. In summary, the dermal-trigeminal-brain perivascular spaces or tissues and the linkage to the lymphatic network mediated the intradermal brain-targeted delivery.


Subject(s)
Brain/metabolism , Coloring Agents/administration & dosage , Drug Delivery Systems , Evans Blue/administration & dosage , Administration, Intranasal , Animals , Coloring Agents/pharmacokinetics , Evans Blue/pharmacokinetics , Immunohistochemistry , Injections, Intradermal , Injections, Intravenous , Lymph Nodes/metabolism , Lymphatic Vessels/metabolism , Male , Mice , Mice, Inbred ICR , Rats, Sprague-Dawley , Time Factors , Tissue Distribution , Trigeminal Nerve/metabolism
13.
Drug Deliv ; 25(1): 1302-1318, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29869524

ABSTRACT

Currently, combination drug therapy is one of the most effective approaches to glioma treatment. However, due to the inherent dissimilar pharmacokinetics of individual drugs and blood brain barriers, it was difficult for the concomitant drugs to simultaneously be delivered to glioma in an optimal dose ratio manner. Herein, a cationic micellar core (Cur-M) was first prepared from d-α-tocopherol-grafted-ε-polylysine polymer to encapsulate the hydrophobic curcumin, followed by dopamine-modified-poly-γ-glutamic acid polymer further deposited on its surface as a anion shell through pH-sensitive linkage to encapsulate the hydrophilic doxorubicin (DOX) hydrochloride. By controlling the combinational Cur/DOX molar ratio at 3:1, a pH-sensitive core-shell nanoparticle (PDCP-NP) was constructed to simultaneously target the cancer stem cells (CSCs) and the differentiated tumor cells. PDCP-NP exhibited a dynamic diameter of 160.8 nm and a zeta-potential of -30.5 mV, while its core-shell structure was further confirmed by XPS and TEM. The ratiometric delivery capability of PDCP-NP was confirmed by in vitro and in vivo studies, in comparison with the cocktail Cur/DOX solution. Meanwhile, the percentage of CSCs in tumors was significantly decreased from 4.16% to 0.95% after treatment with PDCP-NP. Overall, PDCP-NP may be a promising carrier for the combination therapy with drug candidates having dissimilar physicochemical properties.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/chemistry , Glioma/drug therapy , Nanoparticles/chemistry , Animals , Cell Line, Tumor , Curcumin/administration & dosage , Curcumin/chemistry , Doxorubicin/administration & dosage , Doxorubicin/chemistry , Drug Carriers/chemistry , Drug Delivery Systems/methods , Glutamic Acid/chemistry , Humans , Hydrogen-Ion Concentration , Male , Micelles , Neoplastic Stem Cells/drug effects , Polylysine/chemistry , Polymers/chemistry , Rats , Rats, Sprague-Dawley , alpha-Tocopherol/chemistry
14.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 35(2): 237-243, 2018 04 25.
Article in Chinese | MEDLINE | ID: mdl-29745529

ABSTRACT

The chemical extraction method was used to prepare the rat uterine decellularized scaffolds, and to investigate the feasibility of preparing the extracellular matrix (ECM) hydrogel. The rat uterus were collected and extracted by 1%sodium dodecyl sulfate (SDS), 3% TritonX-100 and 4% sodium deoxycholate (SDC) in sequence. Scanning electron microscopy, histochemical staining and immunohistochemistry was used to assess the degree of decellularization of rat uterine scaffold. The prepared decellularized scaffold was digested with pepsin to obtain a uterine ECM hydrogel, and the protein content of ECM was determined by specific ELISA kit. Meanwhile, the mechanical characteristic of ECM hydrogel was measured. The results showed that the chemical extraction method can effectively remove the cells effectively in the rat uterine decellularized scaffold, with the ECM composition preserved completely. ECM hydrogel contains a large amount of ECM protein and shows a good stability, which provides a suitable supporting material for the reconstruction of endometrium in vitro.

15.
Oncotarget ; 9(14): 11767-11782, 2018 Feb 20.
Article in English | MEDLINE | ID: mdl-29589596

ABSTRACT

Nephropathy is one of the most severe complications of diabetic patients. The therapeutic strategies for diabetic patients should not only focus on the control of blood glucose but also pay attention to the occurrence of diabetic nephropathy (DN). Coenzyme Q10 (CoQ10) has great therapeutic potential for DN. However, the clinical application of CoQ10 has been limited because of its low water-solubility and non-specific distribution. Liposomes were supposed to be an effective way for delivering CoQ10 to kidney. CoQ10 was effectively encapsulated into the liposome (CoQ10-LIP) with a high entrapment efficiency of 86.15 %. The CoQ10-LIP exhibited a small hydrodynamic diameter (180 ± 2.1 nm) and negative zeta potential (-18.20 mV). Moreover, CoQ10-LIP was combined with ultrasound-mediated microbubble destruction (UTMD) to enhance specific distribution of CoQ10 in kidney. In early stage of diabetic mellitus (DM), rats were administrated with CoQ10-LIP followed by UTMD (CoQ10-LIP+UTMD) to prevent occurrence of DN. Results revealed that CoQ10-LIP+UTMD effectively prevented the renal morphology and function of diabetics rats from damage. The protective mechanism of CoQ10-LIP was highly associated with protecting podocyte, promoting vascular repair and inhibiting cell apoptosis. Conclusively, CoQ10-LIP in combination with UTMD might be a potential strategy to prevent occurrence of DN.

16.
Adv Healthc Mater ; 7(9): e1701130, 2018 05.
Article in English | MEDLINE | ID: mdl-29350498

ABSTRACT

Herein, a theranostic liposome (QSC-Lip) integrated with superparamagnetic iron oxide nanoparticles (SPIONs) and quantum dots (QDs) and cilengitide (CGT) into one platform is constructed to target glioma under magnetic targeting (MT) for guiding surgical resection of glioma. Transmission electron microscopy and X-ray photoelectron spectroscopy confirm the complete coencapsulation of SPIONs and QDs in liposome. Besides, CGT is also effectively encapsulated into the liposome with an encapsulation efficiency of ∼88.9%. QSC-Lip exhibits a diameter of 100 ± 1.24 nm, zeta potential of -17.10 ± 0.11 mV, and good stability in several mediums. Moreover, each cargo shows a biphasic release pattern from QSC-Lip, a rapid initial release within initial 10 h followed by a sustained release. Cellular uptake of QSC-Lip is significantly enhanced by C6 cells under MT. In vivo dual-imaging studies show that QSC-Lip not only produces an obvious negative-contrast enhancement effect on glioma by magnetic resonance imaging but also makes tumor emitting fluorescence under MT. The dual-imaging of QSC-Lip guides the accurate resection of glioma by surgery. Besides, CGT is also specifically distributed to glioma after administration of QSC-Lip under MT, resulting in an effective inhibition of tumors. The integrated liposome may be a potential carrier for theranostics of tumor.


Subject(s)
Brain Neoplasms , Glioma , Magnetite Nanoparticles , Neoplasms, Experimental , Quantum Dots , Surgery, Computer-Assisted/methods , Theranostic Nanomedicine/methods , Animals , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Cell Line, Tumor , Glioma/diagnostic imaging , Glioma/surgery , Liposomes , Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/therapeutic use , Neoplasms, Experimental/diagnostic imaging , Neoplasms, Experimental/surgery , Quantum Dots/chemistry , Quantum Dots/therapeutic use , Rats , Rats, Sprague-Dawley
17.
Colloids Surf B Biointerfaces ; 160: 704-714, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29035818

ABSTRACT

A poor percutaneous penetration capability for most topical anti-inflammatory drugs is one of the main causes compromising their therapeutic effects on psoriatic skin. Even though curcumin has shown a remarkable efficacy in the treatment of psoriasis, its effective penetration through the stratum corneum is still a major challenge during transdermal delivery. The aim of our study was to design skin-permeating nanoparticles (NPs) to facilitate delivery of curcumin to the deeper layers of the skin. A novel amphiphilic polymer, RRR-α-tocopheryl succinate-grafted-ε-polylysine conjugate (VES-g-ε-PLL) was synthesized and self-assembled into polymeric nanoparticles. The nanoparticles of VES-g-ε-PLL exhibiting an ultra-small hydrodynamic diameter (24.4nm) and a positive Zeta potential (19.6mV) provided a strong skin-penetrating ability in vivo. Moreover, curcumin could effectively be encapsulated in the polymeric nanoparticles with a drug loading capacity of 3.49% and an encapsulating efficiency of 78.45%. In order to prolong the retention time of the ultra-small curcumin-loaded nanoparticles (CUR-NPs) in the skin, silk fibroin was used as a hydrogel-based matrix to further facilitate topical delivery of the model drug. In vitro studies showed that CUR-NPs incorporated in silk fibroin hydrogel (CUR-NPs-gel) exhibited a slower release profile of curcumin than the plain CUR-gel, without compromising the skin penetration ability of CUR-NPs. In vivo studies on miquimod-induced psoriatic mice showed that CUR-NPs-gel exhibited a higher therapeutic effect than CUR-NPs as the former demonstrated a more powerful skin-permeating capability and a more effective anti-keratinization process. CUR-NPs-gel was therefore able to inhibit the expression of inflammatory cytokines (TNF-α, NF-κB and IL-6) to a greater extent. In conclusion, the permeable nanoparticle-gel system may be a potential carrier for the topical delivery of lipophilic anti-psoriatic drugs.


Subject(s)
Curcumin/administration & dosage , Fibroins/chemistry , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Nanoparticles/chemistry , Psoriasis/drug therapy , Skin/metabolism , Administration, Cutaneous , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Curcumin/chemistry , Curcumin/pharmacokinetics , Disease Models, Animal , Drug Delivery Systems/methods , Humans , Male , Mice, Inbred BALB C , Microscopy, Electron, Transmission , Nanoparticles/ultrastructure , Particle Size , Polymers/chemistry , Psoriasis/pathology , Silk/chemistry
18.
ACS Appl Mater Interfaces ; 9(35): 29580-29594, 2017 Sep 06.
Article in English | MEDLINE | ID: mdl-28809108

ABSTRACT

Hydrogel was not only used as an effective support matrix to prevent intrauterine adhesion after endometrial injury but also served as scaffold to sustain release of some therapeutics, especially growth factor. However, because of the rapid turnover of the endometrial mucus, the poor retention and bad absorption of therapeutic agents in damaged endometrial cavity were two important factors hindering their pharmacologic effect. Herein, a mucoadhesive hydrogel was described by using heparin-modified poloxamer (HP) as the matrix material and ε-polylysine (EPL) as functional excipient. Various EPL-HP hydrogels formulations are screened by rheological evaluation and mucoadhesion studies. It was found that the rheological and mucoadhesive properties of EPL-HP hydrogels were easily controlled by changing the amount of EPL in formulation. The storage modulus of EPL-HP hydrogel with 90 µg/mL of EPL (EPL-HP-90) was elevated to be 1.9 × 105 Pa, in accordance with the adhesion force rising to 3.18 N (10-fold higher than HP hydrogels). Moreover, in vitro release of model drug keratinocyte growth factor (KGF) from EPL-HP hydrogel was significantly accelerated by adding EPL in comparison with HP hydrogel. Both strong mucoadhesive ability and the accelerated drug release behavior for EPL-HP-90 made more of the encapsulated KGF absorbed by the uterus basal layer and endometrial glands after 8 h of administration in uterus cavity. Meanwhile, the morphology of endometrium in the injured uterus was repaired well after 3 d of treatment with KGF-EPL-HP-90 hydrogels. Compared with KGF-HP group, not only proliferation of endometrial epithelial cell and glands but also angiogenesis in the regenerated endometrium was obviously enhanced after treatment with KGF-EPL-HP-90 hydrogels. Alternatively, the cellular apoptosis in the damaged endometrium was significantly inhibited after treatment with KGF-EPL-HP-90 hydrogels. Overall, the mucoadhesive EPL-HP hydrogel with a suitable KGF release profile may be a more promising approach than HP hydrogel alone to repair the injured endometrium.


Subject(s)
Hydrogels/chemistry , Excipients , Female , Heparin , Humans , Poloxamer , Polylysine
19.
Colloids Surf B Biointerfaces ; 158: 295-307, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28711016

ABSTRACT

Severe toxicity and poor tumour penetration are two intrinsic limited factors to hinder the broad clinical application for most of first-line chemotherapeutics. In this study, a novel vitamin E succinate-grafted ε-polylysine (VES-g-PLL) polymer was synthesized by using ε-polylysine as backbone. By adjusting VES graft ratio, VES-g-PLL (50) with a theoretic VES graft ratio of 50% could self-assemble into a supermolecular micelle with a hydrodynamic diameter (Dh) of ca.20nm, and Zeta potential of 19.6mV. VES-g-PLL micelles themselves displayed a strong anti-tumour effect on glioma. The poorly water-soluble curcumin was effectively encapsulated in VES-g-PLL micelles with the drug loading amount and entrapment efficiency reaching 4.32% and 82.27%, respectively. In a physiologic medium, curcumin-loaded VES-g-PLL micelles (Cur-Micelles) not only remained stable without obvious drug leakage but also sustained the release of its encapsulated curcumin for a long time. Because of the ultra-small size and positively-charged surface, Cur-Micelles penetrated the deeper tumour zone than free curcumin, resulting in a significant inhibition of tumour spheroids growth. Moreover, in vivo strong antitumor effect of Cur-Micelles was also exhibited at assistance of ultrasound-targeted microbubble destruction and the real-time MRI imaging demonstrated a nearly complete suppression of glioma after 28days of treatment. TUNEL staining showed that the therapeutic mechanism of Cur-Micelles was relevant to the apoptosis of tumour cells. Finally, in vivo nontoxicity of Cur-Micelles against normal organs including heart, liver, spleen, lung and kidney tissues was also demonstrated by the HE staining. In conclusion, VES-g-PLL micelles may serve as a potential carrier for curcumin to enhance tumour penetration and improve therapeutic effect on glioma.


Subject(s)
Curcumin/chemistry , Micelles , Polylysine/chemistry , Apoptosis/drug effects , Curcumin/pharmacology , Glioma/metabolism , Humans , In Situ Nick-End Labeling , Kidney/metabolism , Liver/metabolism , Lung/metabolism , MCF-7 Cells , Spleen/metabolism , alpha-Tocopherol/analogs & derivatives , alpha-Tocopherol/metabolism
20.
Adv Healthc Mater ; 6(19)2017 Oct.
Article in English | MEDLINE | ID: mdl-28661050

ABSTRACT

How to maintain the stability of basic fibroblast growth factor (bFGF) in wounds with massive wound fluids is important to accelerate wound healing. Here, a novel liposome with hydrogel core of silk fibroin (SF-LIP) is successfully developed by the common liposomal template, followed by gelation of liquid SF inside vesicle under sonication. SF-LIP is capable of encapsulating bFGF (SF-bFGF-LIP) with high efficiency, having a diameter of 99.8 ± 0.5 nm and zeta potential of -9.41 ± 0.10 mV. SF-LIP effectively improves the stability of bFGF in wound fluids. After 8 h of incubation with wound fluids at 37 °C, more than 50% of free bFGF are degraded, while only 18.6% of the encapsulated bFGF in SF-LIP are destroyed. Even after 3 d of preincubation with wound fluids, the cell proliferation activity and wound healing ability of SF-bFGF-LIP are still preserved but these are severely compromised for the conventional bFGF-liposome (bFGF-LIP). In vivo experiments reveal that SF-bFGF-LIP accelerates the wound closure of mice with deep second-degree scald. Moreover, due to the protective effect and enhanced penetration ability, SF-bFGF-LIP is very helpful to induce regeneration of vascular vessel in comparison with free bFGF or bFGF-LIP. The liposome with SF hydrogel core may be a potential carrier as growth factors for wound healing.


Subject(s)
Burns/drug therapy , Fibroblast Growth Factor 2/administration & dosage , Fibroins/chemistry , Hydrogels/chemistry , Liposomes/chemistry , Wound Healing/drug effects , Animals , Burns/pathology , Diffusion , Drug Compounding/methods , Drug Stability , Fibroblast Growth Factor 2/chemistry , Mice , Mice, Inbred C57BL , Nanocapsules/chemistry , Nanocapsules/ultrastructure , Particle Size , Treatment Outcome , Wound Closure Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...