Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 254(Pt 3): 126801, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37689288

ABSTRACT

Histone lysine-specific demethylase 1 (LSD1) expression has been evaluated in multiple tumors, including gastric cancer (GC). However, the mechanisms underlying LSD1 dysregulation in GC remain largely unclear. In this study, neural precursor cell-expressed developmentally down-regulated protein 8 (NEDD8) was identified to be conjugated to LSD1 at K63 by ubiquitin-conjugating enzyme E2 M (UBE2M), and this neddylated LSD1 could promote LSD1 ubiquitination and degradation, leading to a decrease of GC cell stemness and chemoresistance. Herein, our findings revealed a novel mechanism of LSD1 neddylation and its contribution to decreasing GC cell stemness and chemoresistance. Taken together, our findings may whistle about the future application of neddylation inhibitors.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/drug therapy , Drug Resistance, Neoplasm , Ubiquitination , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Histone Demethylases
2.
Eur J Med Chem ; 261: 115799, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37722289

ABSTRACT

Respiratory syncytial virus (RSV) is a major cause of serious lower respiratory tract infections in infants, children, and older persons. Currently, the only approved anti-viral chemotherapeutic drug for RSV treatment is ribavirin aerosol; however, its significant toxicity has led to restricted clinical use. In a previous study, we developed various benzimidazole derivatives against RSV. In this study, we synthesised 3-azide substituted furoxazine-fused benzimidazole derivatives by sulfonylation and azide substitution of the 3-hydroxyl group of the furoxazine-fused benzimidazole derivatives. Subsequently, a series of 3-(1,2,3-triazol-1-yl)-substituted furoxazine-fused benzimidazole derivatives were synthesised using the classical click reaction. Biological evaluations of the target compounds indicated that compound 4a-2 had higher activity against RSV (EC50 = 12.17 µM) and lower cytotoxicity (CC50 = 390.64 µM). Compound 4a-2 exerted anti-viral effects against the RSV Long strain by inhibiting apoptosis and the elevation of reactive oxygen species (ROS) and inflammatory factors caused by viral infection in vitro. Additionally, the clinical symptoms of the virus-infected mice were markedly relieved, and the viral load in the lung tissues was dramatically decreased. The biosafety profile of compound 4a-2 was also favourable, showing no detectable adverse effects on any of the major organs in vivo. These findings underscore the potential of compound 4a-2 as a valuable therapeutic option for combating RSV infections while also laying the foundation for further research and development in the field.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Child , Mice , Humans , Animals , Aged , Aged, 80 and over , Azides/pharmacology , Antiviral Agents , Respiratory Syncytial Virus Infections/drug therapy , Benzimidazoles
3.
Eur J Med Chem ; 259: 115673, 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37487305

ABSTRACT

Histone deacetylases, as a new class of anticancer targets, could maintain homeostasis by catalyzing histone deacetylation and play important roles in regulating the expression of target genes. Due to the fact that simultaneous intervention with dual tumor related targets could improve treatment effects, researches on innovative design of dual-target drugs are underway. HDAC is known as a "sensitizer" for the synergistic effects with other anticancer-target drugs because of its flexible structure design. The synergistic effects of HDAC inhibitor and other target inhibitors usually show enhanced inhibitory effects on tumor cells, and also provide new strategies to overcome multidrug resistance. Many research groups have reported that simultaneously inhibiting HDAC and other targets, such as tubulin, EGFR, could enhance the therapeutic effects. The o-aminobenzamide group is often used as a ZBG group in the design of HDAC inhibitors with potent antitumor effects. Given the prolonged inhibitory effects and reduced toxic side effects of HDAC inhibitors using o-aminobenzamide as the ZBG group, the o-aminobenzamide group is expected to become a more promising alternative to hydroxamic acid. In fact, o-aminobenzamide-based dual inhibitors of HDAC with different chemical structures have been extensively prepared and reported with synergistic and enhanced anti-tumor effects. In this work, we first time reviewed the rational design, molecular docking, inhibitory activities and potential application of o-aminobenzamide-based HDAC inhibitors with dual targeting capabilities in cancer therapy, which might provide a reference for developing new and more effective anticancer drugs.


Subject(s)
Antineoplastic Agents , Neoplasms , Histone Deacetylase Inhibitors/chemistry , Molecular Docking Simulation , Cell Line, Tumor , Antineoplastic Agents/chemistry , Tubulin , Cell Proliferation , Neoplasms/drug therapy
4.
Eur J Med Chem ; 259: 115660, 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37517205

ABSTRACT

Influenza A virus is a highly mutable pathogenic pathogen that could cause a global pandemic. It is necessary to find new anti-influenza drugs to resist influenza epidemics due to the seasonal popularity of a certain area every year. Naphthalene derivatives had potential antiviral activity. A series of naphthalene derivatives were synthesized via the metal-free intramolecular hydroarylation reactions of alkynes. Evaluation of their biological efficacy showed that compound 2-aminonaphthalene 4d had better antiviral activity in vitro than ribavirin. By studying the mechanism of action of 2-aminonaphthalene 4din vivo and in vitro, we found that 4d had antiviral activity to three different subtype influenza viruses of A/Weiss/43 (H1N1), A/Virginia/ATCC2/2009 (H1N1) and A/California/2/2014 (H3N2). Compound 4d had the best effect after viral adsorption, and mainly played in the early stage of virus replication. 2-Aminonaphthalene 4d could reduce the replication of virus by inhibiting the NP and M proteins of virus. Compound 4d cut down ROS accumulation, autophagy and apoptosis induced by influenza virus. Inflammatory response mediated by RIG-1 pathway were suppressed in the cell and mice. In addition, the pathological changes of lung tissue and virus titer in mice were reduced by the administration of 4d. Therefore, naphthalene derivative 4d is a potential drug for the treatment of influenza A virus infection.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza, Human , Animals , Mice , Humans , Influenza A Virus, H3N2 Subtype , 2-Naphthylamine/metabolism , 2-Naphthylamine/pharmacology , 2-Naphthylamine/therapeutic use , Antiviral Agents/therapeutic use , Influenza, Human/drug therapy , Virus Replication
5.
Bioorg Chem ; 139: 106712, 2023 10.
Article in English | MEDLINE | ID: mdl-37421691

ABSTRACT

Alkoxy-substituted enamides are often used as synthetic intermediates due to their special reactivity. To the best our knowledge, the biological activity of alkoxy-substituted amines has never been reported so far. We have synthesized a series of alkoxy-substituted enamides to study their anti-influenza A virus activity in vitro and in vivo. Among these compounds, compound E-2o had the best antiviral activity (EC50 = 2.76 ± 0.67 µM) and low cytotoxicity (CC50 = 662.87 ± 24.85 µM). The mechanism of action of this compound was preliminarily explored by us. It alleviated the cytopathic effects and cell death caused by different subtypes of influenza A virus. Different drug delivery methods and timed dosing experiments had shown that E-2o had the best therapeutic effect and mainly played a role in the early stages of virus replication. The expansion of influenza viruses in cells was inhibited by reducing ROS accumulation, cell apoptosis, and autophagy. Alkoxy-substituted enamide E-2o reduced the production of interferon and other pro-inflammatory factors in the RIG-Ⅰ pathway and its downstream NF-κB was induced by influenza A virus in vitro and in vivo. It avoided damage in the mice which was caused by excessive inflammatory factors. In addition, the weight loss and lung lesion damage in mice caused by influenza virus were improved by compound E-2o. Therefore, Alkoxy-substituted enamide E-2o could inhibit the replication of influenza viruses in vivo and in vitro, and has the potential to be developed into a drug for treating influenza.


Subject(s)
Influenza A virus , Influenza, Human , Animals , Mice , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Influenza, Human/drug therapy , NF-kappa B/metabolism
6.
Phytomedicine ; 118: 154943, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37421765

ABSTRACT

BACKGROUND: Shikonin, a natural naphthoquinone compound, has a wide range of pharmacological effects, but its anti-tumor effect and underlying mechanisms in bladder cancer remain unclear. PURPOSE: We aimed to investigate the role of shikonin in bladder cancer in vitro and in vivo in order to broaden the scope of shikonin's clinical application. STUDY DESIGN AND METHODS: We performed MTT and colony formation to detect the inhibiting effect of shikonin on bladder cancer cells. ROS staining and flow cytometry assays were performed to detect the accumulation of ROS. Western blotting, siRNA and immunoprecipitation were used to evaluate the effect of necroptosis in bladder cancer cells. Transmission electron microscopy and immunofluorescence were used to examine the effect of autophagy. Nucleoplasmic separation and other pharmacological experimental methods described were used to explore the Nrf2 signal pathway and the crosstalk with necroptosis and autophagy. We established a subcutaneously implanted tumor model and performed immunohistochemistry assays to study the effects and the underlying mechanisms of shikonin on bladder cancer cells in vivo. RESULTS: The results showed that shikonin has a selective inhibitory effect on bladder cancer cells and has no toxicity on normal bladder epithelial cells. Mechanically, shikonin induced necroptosis and impaired autophagic flux via ROS generation. The accumulation of autophagic biomarker p62 elevated p62/Keap1 complex and activated the Nrf2 signaling pathway to fight against ROS. Furthermore, crosstalk between necroptosis and autophagy was present, we found that RIP3 may be involved in autophagosomes and be degraded by autolysosomes. We found for the first time that shikonin-induced activation of RIP3 may disturb the autophagic flux, and inhibiting RIP3 and necroptosis could accelerate the conversion of autophagosome to autolysosome and further activate autophagy. Therefore, on the basis of RIP3/p62/Keap1 complex regulatory system, we further combined shikonin with late autophagy inhibitor(chloroquine) to treat bladder cancer and achieved a better inhibitory effect. CONCLUSION: In conclusion, shikonin could induce necroptosis and impaired autophagic flux through RIP3/p62/Keap1 complex regulatory system, necroptosis could inhibit the process of autophagy via RIP3. Combining shikonin with late autophagy inhibitor could further activate necroptosis via disturbing RIP3 degradation in bladder cancer in vitro and in vivo.


Subject(s)
Naphthoquinones , Urinary Bladder Neoplasms , Humans , Reactive Oxygen Species/metabolism , Necroptosis , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Cell Death , Naphthoquinones/pharmacology , Autophagy , Urinary Bladder Neoplasms/drug therapy
7.
Bioorg Chem ; 139: 106684, 2023 10.
Article in English | MEDLINE | ID: mdl-37356337

ABSTRACT

The microtubule system plays an important role in the mitosis and growth of eukaryotic cells, and it is considered as an appealing and highly successful molecular target for cancer treatment. In fact, microtubule targeting agents, such as paclitaxel and vinblastine, have been approved by FDA for tumor therapy, which have achieved significant therapeutic effects and sales performance. At present, microtubule targeting agents mainly include microtubule-destabilizing agents, microtubule-stabilizing agents, and a few tubulin degradation agents. Although there are few reports about tubulin degradation agents at present, tubulin degradation agents show great potential in overcoming multidrug resistance and reducing neurotoxicity. In addition, some natural drugs could specifically degrade tubulin in tumor cells, but have no effect in normal cells, thus showing a good biosafety profile. Therefore, tubulin degradation agents might exhibit a better application. Currently, some small molecules have been designed to promote tubulin degradation with potent antiproliferative activities, showing the potential for cancer treatment. In this work, we reviewed the reports on tubulin degradation, and focused on the degradation mechanism and important functional groups of chemically synthesized compounds, hoping to provide help for the degradation design of tubulin.


Subject(s)
Antineoplastic Agents , Tubulin , Tubulin/metabolism , Microtubules , Antineoplastic Agents/chemistry , Vinblastine/metabolism , Vinblastine/pharmacology , Paclitaxel/metabolism , Tubulin Modulators/chemistry
8.
Bioorg Chem ; 137: 106580, 2023 08.
Article in English | MEDLINE | ID: mdl-37149948

ABSTRACT

As a class of microtubule targeting agents, colchicine binding site inhibitors (CBSIs) are considered as promising drug candidates for cancer therapy. However, due to adverse reactions, there are currently no CBSIs approved by FDA for cancer treatment. Therefore, extensive efforts are still encouraged to find novel CBSIs with different chemical structures and better anticancer efficacies. In this work, we designed and synthesized a new coumarin-dihydroquinoxalone derivative, MY-673, and evaluated its anticancer potency in vitro and in vivo. We confirmed that MY-673 was a potent CBSI that it not only inhibited tubulin polymerization, but also exhibited significant inhibitory potency on the growth of 13 cancer cells with IC50 values from 11.7 nM to 395.9 nM. Based on the results of kinase panel screening, MY-673 could inhibit ERK (extracellular regulated protein kinases) pathways-related kinases. We further confirmed that MY-673 could inhibit ERK signaling pathway in MGC-803 and HGC-27 cells, and then affected the expression level of SMAD4 protein in TGF-ß (transforming growth factor ß) /SMAD (small mother against decapentaplegic) signaling pathway using the western blotting assay. In addition, compound MY-673 could effectively inhibit cell proliferation, migration and induce cell apoptosis. We also further confirmed the in vivo efficacy of MY-673 in inhibiting tumor growth using the MGC-803 xenograft tumor model. At 20 mg/kg, the TGI rate was 85.9%, and it did not cause obvious toxicity to the main organs of mice. Together, the results we report here indicated that MY-673 was a promising CBSI for cancer treatment, which was capable of inhibiting the ERK pathway with potent antiproliferative activities in vitro and in vivo.


Subject(s)
Antineoplastic Agents , Stomach Neoplasms , Humans , Animals , Mice , Tubulin Modulators/pharmacology , Tubulin Modulators/therapeutic use , Tubulin Modulators/chemistry , MAP Kinase Signaling System , Tubulin/metabolism , Microtubules , Colchicine/metabolism , Cell Proliferation , Stomach Neoplasms/drug therapy , Antineoplastic Agents/chemistry , Cell Line, Tumor , Drug Screening Assays, Antitumor , Structure-Activity Relationship
9.
Metabolism ; 142: 155532, 2023 05.
Article in English | MEDLINE | ID: mdl-36889378

ABSTRACT

Heart diseases are associated with substantial morbidity and mortality worldwide. The underlying mechanisms and pathological changes associated with cardiac diseases are exceptionally complex. Highly active cardiomyocytes require sufficient energy metabolism to maintain their function. Under physiological conditions, the choice of fuel is a delicate process that depends on the whole body and organs to support the normal function of heart tissues. However, disordered cardiac metabolism has been discovered to play a key role in many forms of heart diseases, including ischemic heart disease, cardiac hypertrophy, heart failure, and cardiac injury induced by diabetes or sepsis. Regulation of cardiac metabolism has recently emerged as a novel approach to treat heart diseases. However, little is known about cardiac energy metabolic regulators. Histone deacetylases (HDACs), a class of epigenetic regulatory enzymes, are involved in the pathogenesis of heart diseases, as reported in previous studies. Notably, the effects of HDACs on cardiac energy metabolism are gradually being explored. Our knowledge in this respect would facilitate the development of novel therapeutic strategies for heart diseases. The present review is based on the synthesis of our current knowledge concerning the role of HDAC regulation in cardiac energy metabolism in heart diseases. In addition, the role of HDACs in different models is discussed through the examples of myocardial ischemia, ischemia/reperfusion, cardiac hypertrophy, heart failure, diabetic cardiomyopathy, and diabetes- or sepsis-induced cardiac injury. Finally, we discuss the application of HDAC inhibitors in heart diseases and further prospects, thus providing insights into new treatment possibilities for different heart diseases.


Subject(s)
Diabetes Mellitus , Heart Diseases , Heart Failure , Humans , Histone Deacetylases , Heart Diseases/drug therapy , Heart Diseases/etiology , Heart Diseases/metabolism , Cardiomegaly , Heart Failure/drug therapy , Myocytes, Cardiac/metabolism , Energy Metabolism , Diabetes Mellitus/metabolism
10.
Eur J Med Chem ; 252: 115281, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36940611

ABSTRACT

In this work, N-benzylarylamide-dithiocarbamate based derivatives were designed, synthesized, and their biological activities as anticancer agents were explored. Some of the 33 target compounds displayed significant antiproliferative activities with IC50 values at the double-digit nanomolar level. The representative compound I-25 (also named MY-943) not only showed the most effective inhibitory effects on three selected cancer cells MGC-803 (IC50 = 0.017 µM), HCT-116 (IC50 = 0.044 µM) and KYSE450 (IC50 = 0.030 µM), but also exhibited low nanomolar IC50 values from 0.019 to 0.253 µM against the other 11 cancer cells. Compound I-25 (MY-943) effectively inhibited tubulin polymerization and suppressed LSD1 at the enzymatic levels. Compound I-25 (MY-943) could act on the colchicine binding site of ß-tubulin, thus disrupting the construction of cell microtubule network and affecting the mitosis. In addition, compound I-25 (MY-943) could dose-dependently induce the accumulation of H3K4me1/2 (MGC-803 and SGC-7091 cells) and H3K9me2 (SGC-7091 cells). Compound I-25 (MY-943) could induce G2/M phase arrest and cell apoptosis, and suppress migration in MGC-803 and SGC-7901 cells. In addition, compound I-25 (MY-943) significantly modulated the expression of apoptosis- and cycle-related proteins. Furthermore, the binding modes of compound I-25 (MY-943) with tubulin and LSD1 were explored by molecular docking. The results of in vivo anti-gastric cancer assays using in situ tumor models showed that compound I-25 (MY-943) effectively reduced the weight and volume of gastric cancer in vivo without obvious toxicity. All these findings suggested that the N-benzylarylamide-dithiocarbamate based derivative I-25 (MY-943) was an effective dual inhibitor of tubulin polymerization and LSD1 that inhibited gastric cancers.


Subject(s)
Antineoplastic Agents , Stomach Neoplasms , Humans , Tubulin/metabolism , Cell Line, Tumor , Molecular Docking Simulation , Polymerization , Cell Proliferation , Tubulin Modulators/pharmacology , Tubulin Modulators/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Stomach Neoplasms/drug therapy , Histone Demethylases/metabolism , Structure-Activity Relationship , Drug Screening Assays, Antitumor
11.
J Ginseng Res ; 47(2): 311-318, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36926611

ABSTRACT

Background: The beneficial effects of compound K (CK) on different chronic diseases have been shown to be at least related to antioxidant action. Nevertheless, since its antioxidant activity in human retinal pigment epithelial (RPE) cells is still unknown, here we investigated whether CK alleviates oxidative stress-stimulated damage in RPE ARPE-19 cells. Methods: The cytoprotective consequence of CK in hydrogen peroxide (H2O2)-treated cells was evaluated by cell viability, DNA damage, and apoptosis assays. Fluorescence analysis and immunoblotting were performed to investigate the inhibitory action of CK on reactive oxygen species (ROS) production and mitochondrial dysfunction. Results: H2O2-promoted cytotoxicity, oxidative stress, DNA damage, mitochondrial impairment, and apoptosis were significantly attenuated by CK in ARPE-19 cells. Furthermore, nuclear factor erythroid 2-related factor 2 (Nrf2) phosphorylation level and its shuttling to the nucleus were increased, which was correlated with upregulated activation of heme oxygenase-1 (HO-1). However, zinc protoporphyrin, a blocker of HO-1, significantly abrogated the preventive action of CK in H2O2-treated ARPE-19 cells. Conclusion: This study indicates that activation of Nrf2/HO-1 signaling by CK plays an important role in rescuing ARPE-19 cells from oxidative cellular damage.

12.
Materials (Basel) ; 17(1)2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38203886

ABSTRACT

Borosilicate bioactive glasses exhibit excellent bioactivity and degradation properties; however, they suffer from the rapid release of bioactive elements at the initial stage of their degradation. Excessive local concentrations (such as those of B) can affect cell proliferation. Moreover, the degradation and mineralization ability of these glasses deteriorate at the later stages. Aiming to balance the release of bioactive elements during the whole process, herein, a borosilicate bioactive glass 18SiO2-6Na2O-8K2O-8MgO-22CaO-2P2O5-36B2O3 (mol%) was prepared using the melting method. Further, the effects of microcrystallization on the release of bioactive elements and in vitro degradation were studied. Results show that after heat treatment at temperatures over 620 °C, multiple microcrystalline phases, including Ca2SiO4, CaB2O4, and CaMgB2O5, form in the glass. The glass samples heat-treated within the range of 620-640 °C undergo appropriate devitrification degrees, decelerating the rate of pH increase of the immersion solution during the initial stage in comparison to those treated at lower temperatures. This results in a more continuous release of all bioactive elements and allows better control of the overall degradation. Contrarily, the more extensive devitrification degrees of glass samples heat-treated at higher temperatures reverse the pH increase and degradation trends. Since bone marrow mesenchymal stem cells and mouse embryonic osteoblast cells are pH-sensitive, inducing a suitable degree of devitrification proved to favor cell viability and enhance the mineralization capacity. Thus, different microcrystallization degrees provide new approaches for controlling the degradation and release of bioactive elements, resulting in the simultaneous enhancement of biosafety and bioactivity.

13.
Eur J Med Chem ; 240: 114583, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-35834904

ABSTRACT

Novel N-benzylarylamide saderivatives were designed and synthesized, and their antiproliferative activities were explored. Some of 51 target compounds exhibited potent inhibitory activities against MGC-803, HCT-116 and KYSE450 cells with IC50 values in two-digit nanomolar. Compound I-33 (MY-875) displayed the most potent antiproliferative activities against MGC-803, HCT-116 and KYSE450 cells (IC50 = 0.027, 0.055 and 0.067 µM, respectively) and possessed IC50 values ranging from 0.025 to 0.094 µM against other 11 cancer cell lines. Further mechanism studies indicated that compound I-33 (MY-875) inhibited tubulin polymerization (IC50 = 0.92 µM) by targeting the colchicine bingding site of tubulin. Compound I-33 (MY-875) disrupted the construction of the microtubule networks and affected the mitosis in MGC-803 and SGC-7901 cells. In addition, although it acted as a colchicine binding site inhibitor, compound I-33 (MY-875) also activated the Hippo pathway to promote the phosphorylation status of MST and LATS, resulting in the YAP degradation in MGC-803 and SGC-7901 cells. Due to the degradation of YAP, the expression levels of TAZ and Axl decreased. Because of the dual actions on colchicine binding site and Hippo pathway, compound I-33 (MY-875) dose-dependently inhibited cell colony formatting ability, arrested cells at the G2/M phase and induced cells apoptosis in MGC-803 and SGC-7901 cells. Moreover, compound I-33 (MY-875) could regulate the levels of cell cycle and apoptosis regulatory proteins in MGC-803 and SGC-7901 cells. Furthermore, molecular docking analysis suggested that the hydrogen bond and hydrophobic interactions made compound I-33 (MY-875) well bind into the colchicine binding site of tubulin. Collectively, compound I-33 (MY-875) is a novel anti-gastric cancer agent and deserves to be further investigated for cancer therapy by targeting the colchicine binding site of tubulin and activating the Hippo pathway.


Subject(s)
Antineoplastic Agents , Tubulin Modulators , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation , Colchicine/pharmacology , Drug Screening Assays, Antitumor , Hippo Signaling Pathway , Molecular Docking Simulation , Polymerization , Structure-Activity Relationship , Tubulin/metabolism , Tubulin Modulators/chemistry , Tubulin Modulators/pharmacology
14.
Toxicol Appl Pharmacol ; 438: 115908, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35123989

ABSTRACT

Gastric cancer is one of the most common cancers with few effective treatments, a new treatment agent is desperately needed. C-2, a Jaspine B derivative, has shown anti-cancer efficacy in gastric cancer cells. The anti-cancer mechanism, however, remains unknown. As a result, we investigate the anti-cancer effect and the underlying mechanism of C-2 in gastric cancer cells. The results showed that C-2 selectively reduced the proliferation of gastric cancer cells when compared to normal epithelial gastric cells. Western blotting and flow cytometry further demonstrated that Caspase9 is involved in causing cell death. Meanwhile, C-2 triggered autophagy in gastric cancer cells, inhibition of which with LY294002 can enhance the anti-proliferative activity of C-2. Next, we found that C-2 triggered autophagy through activating JNK/ERK, and that inhibitors of these proteins exacerbated C-2 induced cell death. Mechanically, enhanced phosphorylation of JNK/ERK elevated Beclin-1 by disturbing Beclin-1/Bcl-xL or Beclin-1/Bcl-2 complexes, resulting in autophagy and up-regulation of p62. Finally, p62 binds Keap1 competitively to release Nrf2, boosting Nrf2 translocation from the cytoplasm to the nucleus and triggering expression of Nrf2 target genes, so enhancing survival. C-2 inhibited the growth of gastric cancer cells, while JNK/ERK dependent autophagy antagonized C-2 induced cell growth inhibition through p62/Keap1/Nrf2 pathway.


Subject(s)
Autophagy/drug effects , Cell Death/drug effects , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , RNA-Binding Proteins/metabolism , Sphingosine/analogs & derivatives , Stomach Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Cell Line , Cell Line, Tumor , Cell Proliferation/drug effects , HEK293 Cells , Humans , MAP Kinase Kinase 4/metabolism , MAP Kinase Signaling System/drug effects , Oxidative Stress/drug effects , Signal Transduction/drug effects , Signal Transduction/physiology , Sphingosine/pharmacology , Stomach Neoplasms/metabolism
15.
Phytomedicine ; 91: 153721, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34461423

ABSTRACT

BACKGROUND: The bark and petal of Hibiscus syriacus L. (Malvaceae) have been used to relieve pain in traditional Korean medicine. Recently, we identified anthocyanin-enriched polyphenols from the petal of H. syriacus L. (AHs) and determined its anti-melanogenic, anti-inflammatory, and anti-oxidative properties. Nevertheless, the osteogenic potential of AHs remains unknown. PURPOSE: This study was aimed to investigating the effect of AHs on osteoblast differentiation and osteogenesis in osteoblastic cell lines and zebrafish larvae. Furthermore, we investigated whether AHs ameliorates prednisolone (PDS)-induced osteoporosis. STUDY DESIGN AND METHODS: Cell viability was assessed by cellular morphology, MTT assay, and flow cytometry analysis, and osteoblast differentiation was measured alizarin red staining, alkaline phosphatase (ALP) activity, and osteoblast-specific marker expression. Osteogenic and anti-osteoporotic effects of AHs were determined in zebrafish larvae. RESULTS: AHs enhanced calcification and ALP activity concomitant with the increased expression of osterix (OSX), runt-related transcription factor 2 (RUNX2), and ALP in MC3T3-E1 preosteoblast and MG-63 osteosarcoma cells. Additionally, AHs accelerated vertebral formation and mineralization in zebrafish larvae, concurrent with the increased expression of OSX, RUNX2a, and ALP. Furthermore, PDS-induced loss of osteogenic activity and vertebral formation were restored by treatment with AHs, accompanied by a significant recovery of calcification, ALP activity, and osteogenic marker expression. Molecular docking studies showed that 16 components in AHs fit to glucagon synthase kinase-3ß (GSK-3ß); particularly, isovitexin-4'-O-glucoside most strongly binds to the peptide backbone of GSK-3ß at GLY47(O), GLY47(N), and ASN361(O), with a binding score of -7.3. Subsequently, AHs phosphorylated GSK-3ß at SER9 (an inactive form) and released ß-catenin into the nucleus. Pretreatment with FH535, a Wnt/ß-catenin inhibitor, significantly inhibited AH-induced vertebral formation in zebrafish larvae. CONCLUSION: AHs stimulate osteogenic activities through the inhibition of GSK-3ß and subsequent activation of ß-catenin, leading to anti-osteoporosis effects.


Subject(s)
Anthocyanins , Hibiscus , Osteogenesis/drug effects , Osteoporosis , Polyphenols , Animals , Anthocyanins/pharmacology , Glycogen Synthase Kinase 3 beta , Hibiscus/chemistry , Molecular Docking Simulation , Osteoblasts/metabolism , Osteoporosis/drug therapy , Polyphenols/pharmacology , Wnt Signaling Pathway , Zebrafish/metabolism , beta Catenin/metabolism
16.
J Enzyme Inhib Med Chem ; 36(1): 1715-1731, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34425716

ABSTRACT

Hippo signalling pathway plays a crucial role in tumorigenesis and cancer progression. In this work, we identified an N-aryl sulphonamide-quinazoline derivative, compound 9i as an anti-gastric cancer agent, which exhibited potent antiproliferative ability with IC50 values of 0.36 µM (MGC-803 cells), 0.70 µM (HCT-116 cells), 1.04 µM (PC-3 cells), and 0.81 µM (MCF-7 cells), respectively and inhibited YAP activity by the activation of p-LATS. Compound 9i was effective in suppressing MGC-803 xenograft tumour growth in nude mice without obvious toxicity and significantly down-regulated the expression of YAP in vivo. Compound 9i arrested cells in the G2/M phase, induced intrinsic apoptosis, and inhibited cell colony formation in MGC-803 and SGC-7901 cells. Therefore, compound 9i is to be reported as an anti-gastric cancer agent via activating the Hippo signalling pathway and might help foster a new strategy for the cancer treatment by activating the Hippo signalling pathway regulatory function to inhibit the activity of YAP.


Subject(s)
Antineoplastic Agents/pharmacology , Protein Serine-Threonine Kinases/metabolism , Quinazolines/pharmacology , Stomach Neoplasms/drug therapy , Sulfonamides/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , Carcinogenesis/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Gene Expression Regulation/drug effects , Hippo Signaling Pathway , Humans , Mice, Nude , Molecular Structure , Quinazolines/chemical synthesis , Signal Transduction , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Transcription Factors/genetics , Transcription Factors/metabolism
17.
Molecules ; 26(14)2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34299525

ABSTRACT

FAK is a nonreceptor intracellular tyrosine kinase which plays an important biological function. Many studies have found that FAK is overexpressed in many human cancer cell lines, which promotes tumor cell growth by controlling cell adhesion, migration, proliferation, and survival. Therefore, targeting FAK is considered to be a promising cancer therapy with small molecules. Many FAK inhibitors have been reported as anticancer agents with various mechanisms. Currently, six FAK inhibitors, including GSK-2256098 (Phase I), VS-6063 (Phase II), CEP-37440 (Phase I), VS-6062 (Phase I), VS-4718 (Phase I), and BI-853520 (Phase I) are undergoing clinical trials in different phases. Up to now, there have been many novel FAK inhibitors with anticancer activity reported by different research groups. In addition, FAK degraders have been successfully developed through "proteolysis targeting chimera" (PROTAC) technology, opening up a new way for FAK-targeted therapy. In this paper, the structure and biological function of FAK are reviewed, and we summarize the design, chemical types, and activity of FAK inhibitors according to the development of FAK drugs, which provided the reference for the discovery of new anticancer agents.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Discovery , Focal Adhesion Protein-Tyrosine Kinases/antagonists & inhibitors , Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Animals , Antineoplastic Agents/chemistry , Focal Adhesion Protein-Tyrosine Kinases/chemistry , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Models, Molecular , Molecular Targeted Therapy , Neoplasms/metabolism , Protein Kinase Inhibitors/chemistry
18.
Int J Med Sci ; 18(12): 2480-2492, 2021.
Article in English | MEDLINE | ID: mdl-34104079

ABSTRACT

Background: Trans-cinnamaldehyde (tCA), a bioactive component found in Cinnamomum cassia, has been reported to exhibit anti-inflammatory and antioxidant effects, but its efficacy in muscle cells has yet to be found. In this study, we investigated the inhibitory effect of tCA on inflammatory and oxidative stress induced by lipopolysaccharide (LPS) in C2C12 mouse skeletal myoblasts. Methods: To investigate the anti-inflammatory and antioxidant effects of tCA in LPS-treated C2C12 cells, we measured the levels of pro-inflammatory mediator, cytokines, and reactive oxygen species (ROS). To elucidate the mechanism underlying the effect of tCA, the expression of genes involved in the expression of inflammatory and oxidative regulators was also investigated. We further evaluated the anti-inflammatory and antioxidant efficacy of tCA against LPS in the zebrafish model. Results: tCA significantly inhibited the LPS-induced release of pro-inflammatory mediators and cytokines, which was associated with decreased expression of their regulatory genes. tCA also suppressed the expression of Toll-like receptor 4 (TLR4) and myeloid differentiation factor, and attenuated the nuclear translocation of nuclear factor-kappa B (NF-κB) and the binding of LPS to TLR4 on the cell surface in LPS-treated C2C12 cells. Furthermore, tCA abolished LPS-induced generation of ROS and expression levels of ROS producing enzymes, NADPH oxidase 1 (NOX1) and NOX2. However, tCA enhanced the activation of nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2) and the expression of heme oxygenase-1 (HO-1) in LPS-stimulated C2C12 myoblasts. In addition, tCA showed strong protective effects against NO and ROS production in LPS-injected zebrafish larvae. Conclusions: Our findings suggest that tCA exerts its inhibitory ability against LPS-induced inflammatory and antioxidant stress in C2C12 myoblasts by targeting the TLR4/NF-κB, which might be mediated by the NOXs and Nrf2/HO-1 pathways.


Subject(s)
Acrolein/analogs & derivatives , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Inflammation/drug therapy , Oxidative Stress/drug effects , Acrolein/pharmacology , Acrolein/therapeutic use , Animals , Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use , Cell Line , Disease Models, Animal , Drug Evaluation, Preclinical , Inflammation/immunology , Lipopolysaccharides/immunology , Mice , Myoblasts , NF-kappa B/metabolism , Oxidative Stress/immunology , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Signal Transduction/immunology , Toll-Like Receptor 4/metabolism , Zebrafish
19.
Front Oncol ; 11: 658608, 2021.
Article in English | MEDLINE | ID: mdl-33937072

ABSTRACT

Gastric cancer is a global health problem. In this study, we investigate the role of a novel Indole derivative, named LCT-3d, in inhibiting the growth of gastric cancer cells by MTT assay. The Western blotting results showed that LCT-3d modulated the mitochondrial-related proteins and Cleaved-Caspases 3/9, to induce cell apoptosis. The up-regulation of Death receptor 5 (DR5) in MGC803 cells was observed with LCT-3d treatment. Knockdown of DR5 on MGC803 cells partially reversed the LCT-3d-induced mitochondrial apoptosis. The level of Reactive Oxygen Species (ROS) in MGC803 cells was increased with LCT-3d treatment and could be blocked with the pretreatment of the ROS inhibitor N-Acetylcysteine (NAC). The results demonstrate that the elevating ROS can up-regulate the expression of DR5, resulting in apoptosis via mitochondrial pathway. Although the nuclear factor erythroid-2 related factor 2 (Nrf2) pathway served an important role in protecting gastric cancer cells against the injury of ROS, it can't reverse LCT-3d-induced cell apoptosis. Taken together, our study showed that LCT-3d induced apoptosis via DR5-mediated mitochondrial apoptotic pathway in gastric cancer cells. LCT-3d could be a novel lead compound for development of anti-cancer activity in gastric cancer.

20.
Molecules ; 26(6)2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33804230

ABSTRACT

The fruit of Lycium barbarum L. (goji berry) is used as traditional Chinese medicine, and has the functions of immune regulation, anti-tumor, neuroprotection, anti-diabetes, and anti-fatigue. One of the main bioactive components is L. barbarum polysaccharide (LBP). Nowadays, LBP is widely used in the health market, and it is extracted from the fruit of L. barbarum. The planting of L. barbarum needs large amounts of fields, and it takes one year to harvest the goji berry. The efficiency of natural LBP production is low, and the LBP quality is not the same at different places. Goji berry-derived LBP cannot satisfy the growing market demands. Engineered Saccharomyces cerevisiae has been used for the biosynthesis of some plant natural products. Recovery of LBP biosynthetic pathway in L. barbarum and expression of them in engineered S. cerevisiae might lead to the yeast LBP production. However, information on LBP biosynthetic pathways and the related key enzymes of L. barbarum is still limited. In this review, we summarized current studies about LBP biosynthetic pathway and proposed the strategies to recover key enzymes for LBP biosynthesis. Moreover, the potential application of synthetic biology strategies to produce LBP using engineered S. cerevisiae was discussed.


Subject(s)
Drugs, Chinese Herbal/metabolism , Lycium/metabolism , Saccharomyces cerevisiae/metabolism , Animals , Biosynthetic Pathways/physiology , Phytotherapy/methods , Synthetic Biology/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...