Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 12: 1353270, 2024.
Article in English | MEDLINE | ID: mdl-38784770

ABSTRACT

Background: Sedentary behaviour has been associated with an increased risk of falls among older adults. Although gait initiation (GI) is a promising tool used to assess fall risk, it has yet to be quantitatively evaluated for dynamic stability in sedentary populations. Tai Chi exercise is believed to be effective in preventing falls in older adults, but its effect on GI stability has not been quantified. This study aims to compare the stability of GI in sedentary older individuals versus those who are long-term Tai Chi exercisers by using a quantitative approach. Methods: This study included 17 sedentary older women without exercise habits (age: 65.59 ± 3.66 years, average daily sitting time: 8.735 ± 1.847 h/day) and 19 older women who regularly engage in Tai Chi exercise (age: 65.58 ± 3.63 years, years of exercise: 9.84 ± 3.48 years). Every participant underwent five trials of self-paced GI walking tests. Eight cameras and four force plates were used to obtain kinematic and kinetic parameters. The trajectory of the centre of mass (CoM) and the position of the foot placement were recorded. The anterior-posterior (A-P) and medio-lateral (M-L) dynamic stability at the onset and end moments of the single-legged support was calculated using CoM and gait spatiotemporal parameters. The stepping dynamic stability and foot placement positions of both groups were compared. Results: The Tai Chi group had greater stability in the M-L directions at the swing leg's toe-off moment and in the M-L and A-P directions at the heel-strike moment, as well as significantly larger step length, step width and step speed during locomotion than sedentary older women. However, the stability in the A-P directions at the swing leg's toe-off moment and the foot inclination angle was not statistically different between the two groups. Conclusion: Long-term regular Tai Chi exercise can enhance the dynamic stability of GI in older women, and effectively improve their foot placement strategy during GI. The findings further confirm the negative effect of sedentary on the stability control of older women and the positive role of Tai Chi in enhancing their gait stability and reducing the risk of falls.

2.
Front Aging Neurosci ; 15: 1342570, 2023.
Article in English | MEDLINE | ID: mdl-38274990

ABSTRACT

Background: Changes in cognitive control are considered potential factors affecting voluntary motor movements during gait initiation (GI). Simulating environments with higher cognitive resource demands have an effect on the stability of GI task performance, which is of significant importance for assessing fall risk in the older adults and devising fall risk management measures in multiple environments. This study aims to reveal the influence of complex cognitive competitive environment with increased cognitive demands on the dynamic stability during GI in the older women. Methods: Twenty-three older females and twenty-three younger females performed walking tests under three conditions: voluntary initiation (SI), visual light reaction time task (LRT), and cognitive interference + visual light reaction time task (C + LRT). Eight cameras (Qualisys, Sweden, model: Oqus 600) and three force plates (Kistler, Switzerland, model: 9287C) are used to obtain kinematic and kinetic data. To recorde the trajectory of center of pressure (CoP) and the position of the foot placement, and compute the anterior-posterior (A-P) and medio-lateral (M-L) dynamic stability at the onset and end moments of the single-leg support by means of center of mass (CoM) and gait spatiotemporal parameters. Results: Older women responded to the effect of complex environments involving cognitive competition on body stability by prolonging the lateral displacement time of the CoP during the anticipatory postural adjustments (APAs) phase, reducing step length and velocity, and increasing step width and foot inclination angle. Conclusion: Complex initiation environments lead to competition for cognitive resources in the brain, resulting in decreased stability of GI motor control in older adults. The higher the complexity of the cognitive resource demands environment, the lower the stability of GI in older adults, and the greater the effect on their M-L stability at the onset of stepping.

SELECTION OF CITATIONS
SEARCH DETAIL
...