Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Sci Technol ; 65(5): 912-921, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37969345

ABSTRACT

Genetic diversity analysis is crucial for maintaining and managing genetic resources. Several studies have examined the genetic diversity of Korean domestic chicken (KDC) populations using microsatellite markers, but it is difficult to capture the characteristics of the whole genome in this manner. Hence, this study analyzed the genetic diversity of several KDC populations using high-density single nucleotide polymorphism (SNP) genotype data. We examined 935 birds from 21 KDC populations, including indigenous and adapted Korean native chicken (KNC), Hyunin and Jeju KDC, and Hanhyup commercial KDC populations. A total of 212,420 SNPs of 21 KDC populations were used for calculating genetic distances and fixation index, and for ADMIXTURE analysis. As a result of the analysis, the indigenous KNC groups were genetically closer and more fixed than the other groups. Furthermore, Hyunin and Jeju KDC were similar to the indigenous KNC. In comparison, adapted KNC and Hanhyup KDC populations derived from the same original species were genetically close to each other, but had different genetic structures from the others. In conclusion, this study suggests that continuous evaluation and management are required to prevent a loss of genetic diversity in each group. Basic genetic information is provided that can be used to improve breeds quickly by utilizing the various characteristics of native chickens.

2.
Anim Genet ; 54(3): 355-362, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36855963

ABSTRACT

Chicken plumage colouration is an important trait related to productivity in poultry industry. Therefore, the genetic basis for pigmentation in chicken plumage is an area of great interest. However, the colour trait is generally regarded as a qualitative trait and representing colour variations is difficult. In this study, we developed a method to quantify and classify colour using an F2 population crossed from two pure lines: White Leghorn and the Korean indigenous breed Yeonsan Ogye. Using red, green, and blue values in the cropped body region, we identified significant genomic regions on chromosomes 33:3 160 480-7 447 197 and Z:78 748 287-79 173 793. Furthermore, we identified two potential candidate genes (PMEL and MTAP) that might have significant effects on melanin-based plumage pigmentation. Our study presents a new phenotyping method using a computer vision approach and provides new insights into the genetic basis of melanin-based feather colouration in chickens.


Subject(s)
Chickens , Genome-Wide Association Study , Animals , Chickens/genetics , Melanins , Pigmentation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...