Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
PLoS One ; 16(4): e0250319, 2021.
Article in English | MEDLINE | ID: mdl-33909646

ABSTRACT

Projections of the stage of the Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) pandemic and local, regional and national public health policies to limit coronavirus spread as well as "reopen" cities and states, are best informed by serum neutralizing antibody titers measured by reproducible, high throughput, and statically credible antibody (Ab) assays. To date, a myriad of Ab tests, both available and FDA authorized for emergency, has led to confusion rather than insight per se. The present study reports the results of a rapid, point-in-time 1,000-person cohort study using serial blood donors in the New York City metropolitan area (NYC) using multiple serological tests, including enzyme-linked immunosorbent assays (ELISAs) and high throughput serological assays (HTSAs). These were then tested and associated with assays for neutralizing Ab (NAb). Of the 1,000 NYC blood donor samples in late June and early July 2020, 12.1% and 10.9% were seropositive using the Ortho Total Ig and the Abbott IgG HTSA assays, respectively. These serological assays correlated with neutralization activity specific to SARS-CoV-2. The data reported herein suggest that seroconversion in this population occurred in approximately 1 in 8 blood donors from the beginning of the pandemic in NYC (considered March 1, 2020). These findings deviate with an earlier seroprevalence study in NYC showing 13.7% positivity. Collectively however, these data demonstrate that a low number of individuals have serologic evidence of infection during this "first wave" and suggest that the notion of "herd immunity" at rates of ~60% or higher are not near. Furthermore, the data presented herein show that the nature of the Ab-based immunity is not invariably associated with the development of NAb. While the blood donor population may not mimic precisely the NYC population as a whole, rapid assessment of seroprevalence in this cohort and serial reassessment could aid public health decision making.


Subject(s)
COVID-19/epidemiology , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/blood , Antibodies, Viral/immunology , Blood Donors , COVID-19/immunology , Cohort Studies , Enzyme-Linked Immunosorbent Assay/methods , Female , Humans , Immunoglobulin G/blood , Male , Middle Aged , New York City/epidemiology , SARS-CoV-2/pathogenicity , Sensitivity and Specificity , Seroconversion/physiology , Seroepidemiologic Studies , Serologic Tests/methods , Spike Glycoprotein, Coronavirus/immunology
2.
J Clin Microbiol ; 58(12)2020 11 18.
Article in English | MEDLINE | ID: mdl-32917729

ABSTRACT

The development of neutralizing antibodies (NAbs) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) following infection or vaccination is likely to be critical for the development of sufficient population immunity to drive cessation of the coronavirus disease of 2019 (COVID-19) pandemic. A large number of serologic tests, platforms, and methodologies are being employed to determine seroprevalence in populations to select convalescent plasma samples for therapeutic trials and to guide policies about reopening. However, the tests have substantial variations in sensitivity and specificity, and their ability to quantitatively predict levels of NAbs is unknown. We collected 370 unique donors enrolled in the New York Blood Center Convalescent Plasma Program between April and May of 2020. We measured levels of antibodies in convalescent plasma samples using commercially available SARS-CoV-2 detection tests and in-house enzyme-linked immunosorbent assays (ELISAs) and correlated serological measurements with NAb activity measured using pseudotyped virus particles, which offer the most informative assessment of antiviral activity of patient sera against viral infection. Our data show that a large proportion of convalescent plasma samples have modest antibody levels and that commercially available tests have various degrees of accuracy in predicting NAb activity. We found that the Ortho anti-SARS-CoV-2 total Ig and IgG high-throughput serological assays (HTSAs) and the Abbott SARS-CoV-2 IgG assay quantify levels of antibodies that strongly correlate with the results of NAb assays and are consistent with gold standard ELISA results. These findings provide immediate clinical relevance to serology results that can be equated to NAb activity and could serve as a valuable roadmap to guide the choice and interpretation of serological tests for SARS-CoV-2.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Biological Variation, Population , COVID-19/epidemiology , COVID-19/immunology , SARS-CoV-2/immunology , Serologic Tests , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/diagnosis , COVID-19/virology , Cell Line , Enzyme-Linked Immunosorbent Assay , High-Throughput Screening Assays , Humans , Immunophenotyping , Leukocytes, Mononuclear , Population Surveillance , Sensitivity and Specificity , Seroepidemiologic Studies , Serogroup , Serologic Tests/methods , United States/epidemiology
3.
J Cell Biol ; 219(8)2020 08 03.
Article in English | MEDLINE | ID: mdl-32421152

ABSTRACT

Rsp5, the Nedd4 family member in yeast, is an E3 ubiquitin ligase involved in numerous cellular processes, many of which require Rsp5 to interact with PY-motif containing adaptor proteins. Here, we show that two paralogous transmembrane Rsp5 adaptors, Rcr1 and Rcr2, are sorted to distinct cellular locations: Rcr1 is a plasma membrane (PM) protein, whereas Rcr2 is sorted to the vacuole. Rcr2 is delivered to the vacuole using ubiquitin as a sorting signal. Rcr1 is delivered to the PM by the exomer complex using a newly uncovered PM sorting motif. Further, we show that Rcr1, but not Rcr2, is up-regulated via the calcineurin/Crz1 signaling pathway. Upon exogenous calcium treatment, Rcr1 ubiquitinates and down-regulates the chitin synthase Chs3. We propose that the PM-anchored Rsp5/Rcr1 ubiquitin ligase-adaptor complex can provide an acute response to degrade unwanted proteins under stress conditions, thereby maintaining cell integrity.


Subject(s)
Calcineurin/metabolism , Endocytosis , Endosomal Sorting Complexes Required for Transport/metabolism , Membrane Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Ubiquitin-Protein Ligase Complexes/metabolism , Calcineurin/genetics , Chitin Synthase/genetics , Chitin Synthase/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Gene Expression Regulation, Fungal , Membrane Proteins/genetics , Protein Sorting Signals , Proteolysis , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Signal Transduction , Transcription Factors/genetics , Transcription Factors/metabolism , Ubiquitin-Protein Ligase Complexes/genetics , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL
...