Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 668: 223-231, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38677211

ABSTRACT

The sandwich approach, whereby an antigen is captured by a primary antibody and detected by a secondary antibody, is commonly used to improve the selectivity and sensitivity of enzyme-linked immunosorbent assays (ELISA). This work details the experimental factors that impact the reliable translation of this sandwich approach to two commonly used electronic biosensors, namely potentiometric and impedimetric biosensors. Previous studies have demonstrated the Debye screening limitations associated with potentiometric biosensors. However, the correlation between the ionic strength of the measurement buffer and the impedimetric biosensing response has not been studied. Potentiometric biosensors were able to successfully detect the primary antibody and the target antigen by decreasing the ionic strength of the phosphate buffered saline (PBS) measurement buffer from 1x PBS to 0.01x PBS. However, the secondary antibody used for the selective signal amplification was not reliably detected. Therefore, the sandwich approach is not viable for potentiometric sensing at biologically relevant ionic strengths, due to the Debye screening effect. Alternatively, decreasing the ionic strength of the measurement buffer allowed for the successful translation of the sandwich approach to impedimetric biosensors. Impedimetric biosensing literature typically attributes a measured increase in the charge transfer resistance to an increase in the thickness of the immobilized biolayer. However, this work highlights the influence that both the charge and thickness of the biolayer have on the transport of the redox couple. Decreasing the ionic strength of the measurement buffer lowers the molecular charge screening effect. This permits the transport of a positively charged redox probe through a negatively charged immobilized biolayer via migration and diffusion. The results demonstrate that the use of a buffer at a lower, yet biologically relevant ionic strength allows for the successful translation of the sandwich approach to impedimetric biosensors.


Subject(s)
Biosensing Techniques , Enzyme-Linked Immunosorbent Assay , Biosensing Techniques/methods , Osmolar Concentration , Potentiometry/methods
2.
Chemistry ; 25(4): 993-996, 2019 Jan 18.
Article in English | MEDLINE | ID: mdl-30462865

ABSTRACT

Fluorine has been recognized to selectively stabilize anatase titanium dioxide (TiO2 ) crystal facets; however, resolving its physical location at the nanometer scale remains empirically elusive. Here, we provide direct experimental evidence to reveal the spatial distribution of fluorine on single truncated anatase bipyramids (TABs) using nanoscale secondary ion mass spectrometry (NanoSIMS). Fluorine was found to preferentially adsorb on the (001) facet compared to the (101) facet of TABs. Moreover, NanoSIMS depth profiling exhibited a significantly different fluorine distribution between these two facets in the near-surface region, illustrating the essential role of lattice-doped fluorine in the anisotropic crystal growth of TABs.

SELECTION OF CITATIONS
SEARCH DETAIL
...