Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Language
Publication year range
1.
Front Plant Sci ; 12: 781793, 2021.
Article in English | MEDLINE | ID: mdl-34868182

ABSTRACT

The plastid is an essential organelle in autotrophic plant cells, descending from free-living cyanobacteria and acquired by early eukaryotic cells through endosymbiosis roughly one billion years ago. It contained a streamlined genome (plastome) that is uniparentally inherited and non-recombinant, which makes it an ideal tool for resolving the origin and diversity of plant species and populations. In the present study, a large dataset was amassed by de novo assembling plastomes from 295 common wild rice (Oryza rufipogon Griff.) and 1135 Asian cultivated rice (Oryza sativa L.) accessions, supplemented with 34 plastomes from other Oryza species. From this dataset, the phylogenetic relationships and biogeographic history of O. rufipogon and O. sativa were reconstructed. Our results revealed two major maternal lineages across the two species, which further diverged into nine well supported genetic clusters. Among them, the Or-wj-I/II/III and Or-wi-I/II genetic clusters were shared with cultivated (percentage for each cluster ranging 54.9%∼99.3%) and wild rice accessions. Molecular dating, phylogeographic analyses and reconstruction of population historical dynamics indicated an earlier origin of the Or-wj-I/II genetic clusters from East Asian with at least two population expansions, and later origins of other genetic clusters from multiple regions with one or more population expansions. These results supported a single origin of japonica rice (mainly in Or-wj-I/II) and multiple origins of indica rice (in all five clusters) for the history of rice domestication. The massive plastomic data set presented here provides an important resource for understanding the history and evolution of rice domestication as well as a genomic resources for use in future breeding and conservation efforts.

2.
J Exp Bot ; 72(18): 6611-6627, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34129028

ABSTRACT

Ca2+/calmodulin (CaM)-dependent protein kinases (CCaMKs) and mitogen-activated protein kinase kinases (MAPKKs) are two types of kinases that regulate salt stress response in plants. It remains unclear, however, how they cooperatively affect lateral root growth under salt stress. Here, two conserved phosphorylation sites (S102 and T118) of OsCaM1 were identified, and found to affect the ability to bind to Ca2+in vitro and the kinase activity of OsCCaMK in vivo. OsCCaMK specifically interacted with OsMKK1/6 in a Ca2+/CaM-dependent manner. In vitro kinase and in vivo dual-luciferase assays revealed that OsCCaMK phosphorylated OsMKK6 while OsMKK1 phosphorylated OsCCaMK. Overexpression and antisense-RNA repression expression of OsCaM1-1, and CRISPR/Cas9-mediated gene editing mutations of OsMKK1, OsMKK6, and OsMKK1/6 proved that OsCaM1-1, OsMKK1, and OsMKK6 enhanced the auxin content in roots and lateral root growth under salt stress. Consistently, OsCaM1-1, OsMKK1, and OsMKK6 regulated the transcript levels of the genes of this cascade, and salt stress-related and lateral root growth-related auxin signaling under salt stress in rice roots. These findings demonstrate that the OsCaM1-associated OsCCaMK-OsMKK1/6 cascade plays a critical role in recruiting auxin signaling in rice roots. These results also provide new insight into the regulatory mechanism of the CaM-mediated phosphorylation relay cascade to auxin signaling in lateral root growth under salt stress in plants.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Indoleacetic Acids/metabolism , Oryza , Plant Roots/growth & development , Salt Stress , Calmodulin/metabolism , Gene Expression Regulation, Plant , Oryza/genetics , Oryza/metabolism
3.
Evol Appl ; 13(9): 2284-2299, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33005224

ABSTRACT

Cytoplasmic male sterility (CMS) is a widely used genetic tool in modern hybrid rice breeding. Most genes conferring rice gametophytic CMS are homologous to orf79 and co-transcribe with atp6. However, the origin, differentiation and flow of these mitochondrial genes in wild and cultivated rice species remain unclear. In this study, we performed de novo assembly of the mitochondrial genomes of 221 common wild rice (Oryza rufipogon Griff.) and 369 Asian cultivated rice (Oryza sativa L.) accessions, and identified 16 haplotypes of atp6-orf79-like structures and 11 orf79 alleles. These homologous structures were classified into 4 distinct groups (AO-I, AO-II, AO-III and AO-IV), all of which were observed in O. rufipogon but only AO-I was detected in O. sativa, causing a decrease in the frequency of atp6-orf79-like structures from 19.9% to 8.1%. Phylogenetic and biogeographic analyses revealed that the different groups of these gametophytic CMS-related genes in O. rufipogon evolved in a multicentric pattern. The geographical origin of the atp6-orf79-like structures was further traced back, and a candidate region in north-east of Gangetic Plain on the Indian Peninsula (South Asia) was identified as the origin centre of AO-I. The orf79 alleles were detected in all three cytoplasmic types (Or-CT0, Or-CT1 and Or-CT2) of O. rufipogon, but only two alleles (orf79a and orf79b) were observed in Or-CT0 type of O. sativa, while no orf79 allele was found in other types of O. sativa. Our results also revealed that the orf79 alleles in cultivated rice originated from the wild rice population in South and South-East Asia. In addition, strong positive selection pressure was detected on the sequence variations of orf79 alleles, and a special evolutionary strategy was noted in these gametophytic CMS-related genes, suggesting that their divergence could be beneficial to their survival in evolution.

4.
Biochem Biophys Res Commun ; 504(1): 346-351, 2018 09 26.
Article in English | MEDLINE | ID: mdl-30190132

ABSTRACT

In plants, many target proteins of calmodulins (CaMs) have been identified in cellular metabolism and responses. However, calmodulin-like proteins (CMLs) and their target proteins have not been discovered in stress responses in rice. In this study, a novel CC-NBS-LRR protein was obtained in screening a cold stress rice seedlings yeast cDNA library with OsCML16 as bait. Furthermore, yeast two-hybrid and BiFC assays demonstrated that the full length, CC region in the N-terminus and LRR in the C-terminus of Pi304 protein could interact with OsCML16. More interestingly, OsCML16 bound to the 1-10 motif rather than 1-14 motif in the Ca2+ or Mg2+ dependent manner in vitro. In addition, transcript levels of OsCML16 and OsPi304 were induced more markedly in Nipponbare than in 9311 under cold stress. Taken together, these data indicates that they are involved in the cold stress signaling and response in rice.


Subject(s)
Calcium/metabolism , Gene Expression Regulation, Plant , Magnesium/metabolism , Oryza/genetics , Oryza/metabolism , Plant Proteins/metabolism , Amino Acid Motifs , Arabidopsis , Binding Sites , Calmodulin/metabolism , Cold-Shock Response , DNA, Complementary/metabolism , Leucine/chemistry , Nucleotides/chemistry , Protein Domains , Two-Hybrid System Techniques
5.
Electron. j. biotechnol ; 30: 48-57, nov. 2017. ilus, tab, graf
Article in English | LILACS | ID: biblio-1021453

ABSTRACT

Background: Availability of related rice species is critical for rice breeding and improvement. Two distinct species of domesticated rice exist in the genus Oryza: Oryza sativa (Asian rice) and Oryza glaberrima (African rice). New rice for Africa (NERICA) is derived from interspecific crosses between these two species. Molecular profiling of these germplasms is important for both genetics and breeding studies. We used 30 polymorphic SSR markers to assess the genetic diversity and molecular fingerprints of 53 rice genotypes of O. sativa, O. glaberrima, and NERICA. Results: In total, 180 alleles were detected. Average polymorphism information content and Shannon's information index were 0.638 and 1.390, respectively. Population structure and neighbor-joining phylogenetic tree revealed that 53 genotypes grouped into three distinct subpopulations conforming to the original three groups, except three varieties (IR66417, WAB450-4, MZCD74), and that NERICA showed a smaller genetic distance from O. sativa genotypes (0.774) than from O. glaberrima genotypes (0.889). A molecular fingerprint map of the 53 accessions was constructed with a novel encoding method based on the SSR polymorphic alleles. Ten specific SSR markers displayed different allelic profiles between the O. glaberrima and O. sativa genotypes. Conclusions: Genetic diversity studies revealed that 50 rice types were clustered into different subpopulations whereas three genotypes were admixtures. Molecular fingerprinting and 10 specific markers were obtained to identify the 53 rice genotypes. These results can facilitate the potential utilization of sibling species in rice breeding and molecular classification of O. sativa and O. glaberrima germplasms.


Subject(s)
Oryza/genetics , Genetic Variation , Polymorphism, Genetic , Breeding , DNA Fingerprinting , Microsatellite Repeats , Genotype
6.
PLoS One ; 11(9): e0161746, 2016.
Article in English | MEDLINE | ID: mdl-27603678

ABSTRACT

The introduction of closely related species genomic fragments is an effective way to enrich genetic diversity and creates new germplasms in crops. Here, we studied the genetic diversity of an introgression line (IL) population composed of 106 ILs derived from an interspecific tetra cross between O. glaberrima and O. sativa (RAM3/Jin23B//Jin23B///YuetaiB). The proportion of O. glaberrima genome (PGG) in the ILs ranged from 0.3% to 36.7%, with an average value of 12.32% which is close to the theoretically expected proportion. A total of 250 polymorphic alleles were amplified by 21 AFLP primer combinations with an average of 12 alleles per primer. Population structure analysis revealed that the IL population can be divided into four genetically distinct subpopulations. Both principal component analysis and neighbor-joining tree analysis showed that ILs with a higher PGG displayed greater genetic diversity. Canonical discriminant analysis identified six phenotypic traits (plant height, yield per plant, filled grain percentage, panicle length, panicle number and days to flowering) as the main discriminatory traits among the ILs and between the subpopulations and showed significant phenotypic distances between subpopulations. The effects of PGG on phenotypic traits in the ILs were estimated using a linear admixed model, which showed a significant positive effect on grain yield per plant (0.286±0.117), plant height (0.418 ± 0.132), panicle length (0.663 ± 0.107), and spikelet number per panicle (0.339 ± 0.128), and a significant negative effect on filled grain percentage (-0.267 ± 0.123) and days to flowering (-0.324 ± 0.075). We found that an intermediate range (10% - 20%) of PGG was more effective for producing ILs with favorable integrated agronomic traits. Our results confirm that construction of IL population carrying O. glaberrima genomic fragments could be an effective approach to increase the genetic diversity of O. sativa genome and an appropriate level of PGG could facilitate pyramiding more favorable genes for developing more adaptive and productive rice.


Subject(s)
Edible Grain/genetics , Genetic Variation , Oryza/genetics , Quantitative Trait Loci/genetics , Alleles , Chromosome Mapping , Crops, Agricultural/genetics , Crosses, Genetic , Edible Grain/growth & development , Genetics, Population , Genome, Plant , Oryza/growth & development , Phenotype
7.
Genetics ; 172(2): 1213-28, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16272419

ABSTRACT

Drought tolerance (DT) and drought avoidance (DA) are two major mechanisms in drought resistance of higher plants. In this study, the genetic bases of DT and DA at reproductive stage in rice were analyzed using a recombinant inbred line population from a cross between an indica lowland and a tropical japonica upland cultivar. The plants were grown individually in PVC pipes and two cycles of drought stress were applied to individual plants with unstressed plants as the control. A total of 21 traits measuring fitness, yield, and the root system were investigated. Little correlation of relative yield traits with potential yield, plant size, and root traits was detected, suggesting that DT and DA were well separated in the experiment. A genetic linkage map consisting of 245 SSR markers was constructed for mapping QTL for these traits. A total of 27 QTL were resolved for 7 traits of relative performance of fitness and yield, 36 QTL for 5 root traits under control, and 38 for 7 root traits under drought stress conditions, suggesting the complexity of the genetic bases of both DT and DA. Only a small portion of QTL for fitness- and yield-related traits overlapped with QTL for root traits, indicating that DT and DA had distinct genetic bases.


Subject(s)
Dehydration/metabolism , Disasters , Oryza/genetics , Analysis of Variance , Chromosome Mapping , Genetic Markers , Genetic Variation , Oryza/physiology , Phenotype , Plant Roots/physiology , Quantitative Trait Loci
SELECTION OF CITATIONS
SEARCH DETAIL
...