Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Food Funct ; 15(11): 6174-6188, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38770619

ABSTRACT

Probiotic intervention is an effective strategy to alleviate oxidative stress-related diseases. Our previous studies found that Lactiplantibacillus plantarum NJAU-01 (NJAU-01) exhibited antioxidant effects in a D-galactose (D-gal)-induced aging mouse model. However, the underlying mechanism remains to be unveiled. This study was aimed to investigate the ameliorative effect and mechanism of NJAU-01 against oxidative stress induced by D-gal. The results showed that NJAU-01 could reverse the tendency of a slow body weight gain induced by D-gal. NJAU-01 relieved hepatic oxidative stress via increasing the hepatic total antioxidant capacity and antioxidant enzyme activities including superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT). Moreover, the malondialdehyde (MDA) level was reversed after NJAU-01 supplementation. The proteomic results showed that there were 201 differentially expressed proteins (DEPs) between NJAU-01 and D-gal groups. NJAU-01 regulated the expressions of glutathione S-transferase Mu 5 (Gstm5), glutathione S-transferase P2 (Gstp2) and NADH dehydrogenase 1α subcomplex subunit 7 (Ndufa7) related to oxidative stress, and autophagy protein 5 (Atg5) and plasma alpha-L-fucosidase (Fuca2) involved in autophagy, etc. 16S rDNA sequencing results showed that NJAU-01 supplementation could regulate the gut microbiota dysbiosis induced by D-gal via increasing the relative abundances of the phylum Firmicutes and the genus Lactobacillus and reducing the relative abundances of the phylum Bacteroidetes and the genera Lachnospiraceae_NK4A136_group as well as Prevotellaceae_UCG-001, etc.. Spearman correlation analysis results showed that the altered gut microbiota composition had a significant correlation with antioxidant enzyme activities and the DEPs related to oxidative stress. Overall, NJAU-01 alleviated hepatic oxidative stress induced by D-gal via manipulating the gut microbiota composition and hepatic protein expression profile.


Subject(s)
Galactose , Gastrointestinal Microbiome , Liver , Oxidative Stress , Probiotics , Proteomics , Oxidative Stress/drug effects , Animals , Gastrointestinal Microbiome/drug effects , Mice , Probiotics/pharmacology , Probiotics/administration & dosage , Liver/drug effects , Liver/metabolism , Male , Lactobacillus plantarum , Antioxidants/pharmacology , Malondialdehyde/metabolism , Superoxide Dismutase/metabolism
2.
Nat Prod Res ; 38(5): 781-788, 2024.
Article in English | MEDLINE | ID: mdl-37029624

ABSTRACT

This study investigated phenolic metabolites, antioxidant, cytotoxic and cardioprotective effects of the hydroalcoholic extract from the aerial parts of Hypericum attenuatum Fisch. ex Choisy. The total phenolic and flavonoid contents of the extract were 132.40 ± 2.06 mg GAE/g and 101.46 ± 1.47 mg QE/g respectively. The extract exhibited antioxidant activities with an EC50 value against DPPH radical of 0.099 ± 0.03 mg/mL and a FRAP value of 1.22 ± 0.086 mmol/L Fe2+. The extract could protect H9c2 cardiomyoblasts from the injury of H2O2, while it restored the H9c2 cell viability to 82.69 ± 2.33% at 100 µg/mL. The extract possessed cytotoxicity on MGC803, C666-1 and SW620 cells with IC50 values of 69.77 ± 2.43 µg/mL, 74.97 ± 1.08 µg/mL and 58.91 ± 1.81 µg/mL, respectively. Moreover, it could promote apoptosis of the tested cancer cells. This research provided useful information for the utilization of H. attenuatum as herbal medicine.


Subject(s)
Antineoplastic Agents , Hypericum , Antioxidants/pharmacology , Plant Extracts/pharmacology , Hydrogen Peroxide , Phenols/pharmacology
3.
Chem Biodivers ; 18(10): e2100244, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34310845

ABSTRACT

Hypericum attenuatum Choisy is a traditional Chinese herbal plant with multiple therapeutic effects. In this study, bioactivity-guided fractionation of Hypericum attenuatum Choisy extracts afforded three major flavonoids (including astragalin, guaijaverin and quercetin), which possessed α-Glucosidase inhibitory activity with IC50 values of 33.90±0.68 µM, 17.23±0.75 µM and 31.90±0.34 µM, respectively. Circular dichroism analysis revealed that all the three compounds could interact with α-glucosidase by inducing conformational changes of the enzyme. Molecular docking results indicated that they could bind to the active site in α-glucosidase, and the binding force was driven mainly by hydrogen bond. Additionally, isobolographic analysis of the interactions between two compounds showed that all the combinations presented a synergistic α-glucosidase inhibitory effect at lower concentrations, and the combination between quercetin and guaijaverin or astragalin exhibited the best synergistic effect. This research might provide a theoretical basis for the application of Hypericum attenuatum Choisy in treating hyperglycemia.


Subject(s)
Flavonoids/pharmacology , Glycoside Hydrolase Inhibitors/pharmacology , Hypericum/chemistry , Plant Extracts/pharmacology , alpha-Glucosidases/metabolism , Dose-Response Relationship, Drug , Flavonoids/chemistry , Flavonoids/isolation & purification , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/isolation & purification , Humans , Molecular Structure , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Thermodynamics
4.
AMB Express ; 10(1): 204, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33175275

ABSTRACT

Antimicrobial peptides have been attracting increasing attention for their multiple beneficial effects. In present study, a novel AMP with a molecular weight of 1875.5 Da, was identified from the genome of Lactobacillus casei HZ1. The peptide, which was named as LHH1 was comprised of 16 amino acid residues, and its α-helix content was 95.34% when dissolved in 30 mM SDS. LHH1 exhibited a broad range of antimicrobial activities against Gram-positive bacteria and fungus. It could effectively inhibit Staphylococcus aureus with a minimum inhibitory concentration of 3.5 µM and showed a low hemolytic activity. The scanning electron microscope, confocal laser scanning microscope and flow cytometry results showed that LHH1 exerted its antibacterial activity by damaging the cell membrane of Staphylococcus aureus. Meanwhile, LHH1 also exhibited anti-cancer cell activities against several cancer cells via breaking the cell membrane of MGC803, HCT116 and C666-1 cancer cells.

5.
Phytomedicine ; 57: 292-304, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30802715

ABSTRACT

BACKGROUND: Hypericum attenuatum Choisy, a traditional Chinese herb, has been shown to be effective in the treatment of diseases associated with inflammation and has been used to treat rheumatic arthritis in China for centuries. However, the underlying mechanism of its anti-inflammatory effect is poorly understood. HYPOTHESIS/PURPOSE: In this study, we aimed to investigate the anti-inflammatory mechanisms of EtOAc fractions of H. attenuatum Choisy (Ha-EtOAc) on lipopolysaccharide (LPS)-induced RAW264.7 macrophage inflammation and hypothesized that Ha-EtOAc could attenuate inflammation in the colon. STUDY DESIGN: LPS was utilized to induce RAW264.7 cells inflammation. The anti-inflammatory effect of Ha-EtOAc in RAW264.7 cells was evaluated by measuring the inhibition ratio of nitric oxide (NO) production. Murine ulcerative colitis (UC) was induced by treatment with 2.5% dextran sulfate sodium (DSS). The basic indexes of the mice, including body weight, food intake and hematochezia, were recorded during mice experiments. METHODS: The expression levels of pro-inflammatory cytokines, including TNF-α, IL-6 and IL-1ß, were measured by quantitative real-time PCR and western blot. Additionally, the influences of Ha-EtOAc on the NF-κB and MAPK signaling pathways were determined by western blot and immunofluorescence assays. In addition, the impact of Ha-EtOAc on gut microbiota of mice with UC was detected by 16S rDNA sequencing. RESULTS: Ha-EtOAc inhibited the LPS-induced production of NO and decreased the release of TNF-α, IL-6 and IL-1ß in RAW264.7 cells in a dose-dependent manner. In addition, pretreatment with Ha-EtOAc could suppress the nuclear translocation of p65 and the phosphorylation of Erk1/2, p38 and JNK. Ha-EtOAc treatment ameliorated murine UC, as reflected by a reduced body weight loss, improved colon shortening, alleviated mucosal damage and decreased releases of pro-inflammatory cytokines. Furthermore, Ha-EtOAc could modulate the composition of microbial communities. CONCLUSION: Our results demonstrated that Ha-EtOAc exhibited anti-inflammatory effects mainly by suppressing the NF-κB and MAPK pathways, and Ha-EtOAc treatment may be a potent therapy for the treatment of ulcerative colitis.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Drugs, Chinese Herbal/pharmacology , Gastrointestinal Microbiome/drug effects , Hypericum/chemistry , Inflammation/drug therapy , Acetates/chemistry , Animals , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Cytokines/metabolism , Inflammation/metabolism , Lipopolysaccharides/toxicity , MAP Kinase Signaling System/drug effects , Male , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Nitric Oxide/metabolism , RAW 264.7 Cells , Signal Transduction/drug effects
6.
Food Chem ; 204: 427-436, 2016 Aug 01.
Article in English | MEDLINE | ID: mdl-26988521

ABSTRACT

Corn gluten meal is a major co-product of corn wet milling. Corn gluten meal was hydrolyzed with Alcalase, Flavourzyme, Alcalase+Flavourzyme and Flavourzyme+Alcalase. At the substrate concentration of 10%, corn protein hydrolysate catalyzed by Alcalase had a degree of hydrolysis of 17.83%, which was higher than that by Flavourzyme (3.65%). The hydrolysate catalyzed by Alcalase+Flavourzyme exhibited better antioxidant activities and was further purified. Three novel antioxidant peptides were purified by a series of chromatographic techniques. Sequences of the three peptides were identified as Cys-Ser-Gln-Ala-Pro-Leu-Ala, Tyr-Pro-Lys-Leu-Ala-Pro-Asn-Glu and Tyr-Pro-Gln-Leu-Leu-Pro-Asn-Glu, respectively. Among the three peptides, Cys-Ser-Gln-Ala-Pro-Leu-Ala exhibited good reducing power and excellent scavenging capacities for DPPH radical and superoxide anion radical, with IC50 values of 0.116 and 0.39mg/ml, respectively. The results from our study indicate antioxidant potency of corn protein hydrolysates and peptides separated from corn gluten meal and can provide basic understanding for the application of corn protein hydrolysates as natural antioxidants.


Subject(s)
Antioxidants/chemistry , Peptides/chemistry , Protein Hydrolysates/chemistry , Zea mays/chemistry , Amino Acid Sequence , Antioxidants/isolation & purification , Hydrolysis , Oxidation-Reduction , Peptide Mapping , Peptides/isolation & purification , Plant Proteins/chemistry , Protein Hydrolysates/isolation & purification , Subtilisins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...