Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 52(D1): D1121-D1130, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37843156

ABSTRACT

Biomarkers play an important role in various area such as personalized medicine, drug development, clinical care, and molecule breeding. However, existing animals' biomarker resources predominantly focus on human diseases, leaving a significant gap in non-human animal disease understanding and breeding research. To address this limitation, we present BioKA (Biomarker Knowledgebase for Animals, https://ngdc.cncb.ac.cn/bioka), a curated and integrated knowledgebase encompassing multiple animal species, diseases/traits, and annotated resources. Currently, BioKA houses 16 296 biomarkers associated with 951 mapped diseases/traits across 31 species from 4747 references, including 11 925 gene/protein biomarkers, 1784 miRNA biomarkers, 1043 mutation biomarkers, 773 metabolic biomarkers, 357 circRNA biomarkers and 127 lncRNA biomarkers. Furthermore, BioKA integrates various annotations such as GOs, protein structures, protein-protein interaction networks, miRNA targets and so on, and constructs an interactive knowledge network of biomarkers including circRNA-miRNA-mRNA associations, lncRNA-miRNA associations and protein-protein associations, which is convenient for efficient data exploration. Moreover, BioKA provides detailed information on 308 breeds/strains of 13 species, and homologous annotations for 8784 biomarkers across 16 species, and offers three online application tools. The comprehensive knowledge provided by BioKA not only advances human disease research but also contributes to a deeper understanding of animal diseases and supports livestock breeding.


Subject(s)
Biomarkers , Knowledge Bases , Animals , MicroRNAs/genetics , Proteins , RNA, Circular , RNA, Long Noncoding
2.
Genomics Proteomics Bioinformatics ; 21(5): 1066-1079, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37898309

ABSTRACT

The Resource for Coronavirus 2019 (RCoV19) is an open-access information resource dedicated to providing valuable data on the genomes, mutations, and variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this updated implementation of RCoV19, we have made significant improvements and advancements over the previous version. Firstly, we have implemented a highly refined genome data curation model. This model now features an automated integration pipeline and optimized curation rules, enabling efficient daily updates of data in RCoV19. Secondly, we have developed a global and regional lineage evolution monitoring platform, alongside an outbreak risk pre-warning system. These additions provide a comprehensive understanding of SARS-CoV-2 evolution and transmission patterns, enabling better preparedness and response strategies. Thirdly, we have developed a powerful interactive mutation spectrum comparison module. This module allows users to compare and analyze mutation patterns, assisting in the detection of potential new lineages. Furthermore, we have incorporated a comprehensive knowledgebase on mutation effects. This knowledgebase serves as a valuable resource for retrieving information on the functional implications of specific mutations. In summary, RCoV19 serves as a vital scientific resource, providing access to valuable data, relevant information, and technical support in the global fight against COVID-19. The complete contents of RCoV19 are available to the public at https://ngdc.cncb.ac.cn/ncov/.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/genetics , Knowledge Bases , Mutation
3.
Genomics Proteomics Bioinformatics ; 21(5): 1059-1065, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37806555

ABSTRACT

With the development of artificial intelligence (AI) technologies, biomedical imaging data play an important role in scientific research and clinical application, but the available resources are limited. Here we present Open Biomedical Imaging Archive (OBIA), a repository for archiving biomedical imaging and related clinical data. OBIA adopts five data objects (Collection, Individual, Study, Series, and Image) for data organization, and accepts the submission of biomedical images of multiple modalities, organs, and diseases. In order to protect personal privacy, OBIA has formulated a unified de-identification and quality control process. In addition, OBIA provides friendly and intuitive web interfaces for data submission, browsing, and retrieval, as well as image retrieval. As of September 2023, OBIA has housed data for a total of 937 individuals, 4136 studies, 24,701 series, and 1,938,309 images covering 9 modalities and 30 anatomical sites. Collectively, OBIA provides a reliable platform for biomedical imaging data management and offers free open access to all publicly available data to support research activities throughout the world. OBIA can be accessed at https://ngdc.cncb.ac.cn/obia.


Subject(s)
Artificial Intelligence , Humans
4.
J Zhejiang Univ Sci B ; 12(9): 744-51, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21887850

ABSTRACT

Theaflavins (TFs) are the dimers of a couple of epimerized catechins, which are specially formed during black tea fermentation. To explore the differences among four main TF derivatives (theaflavin (TF(1)), theaflavin-3-gallate (TF(2)A), theaflavin-3'-gallate (TF(2)B), and theaflavin-3,3'-digallate (TF(3))) in scavenging reactive oxygen species (ROS) in vitro, their properties of inhibiting superoxide, singlet oxygen, hydrogen peroxide, and the hydroxyl radical, and their effects on hydroxyl radical-induced DNA oxidative damage were systematically analyzed in the present study. The results show that, compared with (-)-epigallocatechin gallate (EGCG), TF derivatives were good antioxidants for scavenging ROS and preventing the hydroxyl radical-induced DNA damage in vitro. TF(3) was the most positive in scavenging hydrogen peroxide and hydroxyl radical, and TF(1) suppressed superoxide. Positive antioxidant capacities of TF(2)B on singlet oxygen, hydrogen peroxide, hydroxyl radical, and the hydroxyl radical-induced DNA damage in vitro were found. The differences between the antioxidant capacities of four main TF derivatives in relation to their chemical structures were also discussed. We suggest that these activity differences among TF derivatives would be beneficial to scavenge different ROS with therapeutic potential.


Subject(s)
Antioxidants/chemistry , Biflavonoids/chemistry , Catechin/chemistry , DNA Damage , Anions , Cell Line , Erythrocytes/cytology , Humans , Hydrogen Peroxide/chemistry , Hydroxyl Radical , Luminescence , Models, Chemical , Oxygen/chemistry , Polyphenols/chemistry , Reactive Oxygen Species , Tea
SELECTION OF CITATIONS
SEARCH DETAIL
...