Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 316
Filter
1.
Vaccine ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38937182

ABSTRACT

OBJECTIVE: The aim of this study is to demonstrate that the freeze-dried human rabies vaccine (Vero cell), administered in a four-dose schedule (2-1-1) to the 10-60 years old population, has immunogenicity that is not inferior to the approved five-dose schedule and similar vaccines with a four-dose schedule, and to evaluate its safety. METHOD: A total of 1800 individuals were enrolled and divided into three groups: four-dose test group, four-dose control group, and five-dose control group. The rabies virus neutralizing antibodies were measured using the Rapid Fluorescent Focus Inhibition Test to assess immunogenicity, and the incidence of adverse events and serious adverse events were statistically analyzed. RESULTS: The seroconversion rates 14 days after the first dose and 14 days after the complete course of vaccination were 100% in all three groups. The antibody GMC of the four-dose test group was higher than that of the five-dose control group, but slightly lower than the four-dose control group. Seven days after the first dose, both four-dose regimen groups showed higher seroconversion rates and antibody GMCs compared to the five-dose regimen group, proving that the immunogenic effect of the four-dose regimen seven days post-first vaccination is superior to the five-dose regimen. The overall incidence of adverse events showed no significant difference between the four-dose test group and the five-dose control group, but was significantly lower in the four-dose test group compared to the four-dose control group. CONCLUSION: The vaccine in the four-dose test group is equivalent in immunogenic effect to the four-dose control group vaccine and superior to the five-dose control group vaccine; the safety of the vaccine in the four-dose test group is equivalent to the five-dose control group vaccine and superior to the four-dose control group vaccine. CLINICALTRIALS: gov number: NCT05549908.

2.
Nature ; 630(8018): 891-898, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38926617

ABSTRACT

The El Niño-Southern Oscillation (ENSO) provides most of the global seasonal climate forecast skill1-3, yet, quantifying the sources of skilful predictions is a long-standing challenge4-7. Different sources of predictability affect ENSO evolution, leading to distinct global effects. Artificial intelligence forecasts offer promising advancements but linking their skill to specific physical processes is not yet possible8-10, limiting our understanding of the dynamics underpinning the advancements. Here we show that an extended nonlinear recharge oscillator (XRO) model shows skilful ENSO forecasts at lead times up to 16-18 months, better than global climate models and comparable to the most skilful artificial intelligence forecasts. The XRO parsimoniously incorporates the core ENSO dynamics and ENSO's seasonally modulated interactions with other modes of variability in the global oceans. The intrinsic enhancement of ENSO's long-range forecast skill is traceable to the initial conditions of other climate modes by means of their memory and interactions with ENSO and is quantifiable in terms of these modes' contributions to ENSO amplitude. Reforecasts using the XRO trained on climate model output show that reduced biases in both model ENSO dynamics and in climate mode interactions can lead to more skilful ENSO forecasts. The XRO framework's holistic treatment of ENSO's global multi-timescale interactions highlights promising targets for improving ENSO simulations and forecasts.

3.
Eur J Med Chem ; 275: 116571, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38857566

ABSTRACT

Histone Deacetylase 6 (HDAC6) is an essential regulator of histone acetylation processes, exerting influence on a multitude of cellular functions such as cell motility, endocytosis, autophagy, apoptosis, and protein trafficking through its deacetylation activity. The significant implications of HDAC6 in diseases such as cancer, neurodegenerative disorders, and immune disorders have motivated extensive investigation into the development of specific inhibitors targeting this enzyme for therapeutic purposes. Single targeting drugs carry the risk of inducing drug resistance, thus prompting exploration of dual targeting therapy which offers the potential to impact multiple signaling pathways simultaneously, thereby lowering the likelihood of resistance development. While pharmacological studies have exhibited promise in combined therapy involving HDAC6, challenges related to potential drug interactions exist. In response to these challenges, researchers are investigating HDAC6 hybrid molecules which enable the concomitant targeting of HDAC6 and other key proteins, thus enhancing treatment efficacy while mitigating side effects and reducing the risk of resistance compared to traditional combination therapies. The published design strategies for dual targeting inhibitors of HDAC6 are summarized and discussed in this review. This will provide some valuable insights into more novel HDAC6 dual targeting inhibitors to meet the urgent need for innovative therapies in oncology and other related fields.

4.
Nat Commun ; 15(1): 3903, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724537

ABSTRACT

Tropical Cyclones (TCs) are devastating natural disasters. Analyzing four decades of global TC data, here we find that among all global TC-active basins, the South China Sea (SCS) stands out as particularly difficult ocean for TCs to intensify, despite favorable atmosphere and ocean conditions. Over the SCS, TC intensification rate and its probability for a rapid intensification (intensification by ≥ 15.4 m s-1 day-1) are only 1/2 and 1/3, respectively, of those for the rest of the world ocean. Originating from complex interplays between astronomic tides and the SCS topography, gigantic ocean internal tides interact with TC-generated oceanic near-inertial waves and induce a strong ocean cooling effect, suppressing the TC intensification. Inclusion of this interaction between internal tides and TC in operational weather prediction systems is expected to improve forecast of TC intensity in the SCS and in other regions where strong internal tides are present.

5.
J Agric Food Chem ; 72(20): 11308-11320, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38720452

ABSTRACT

The dearomatization at the hydrophobic tail of the boscalid was carried out to construct a series of novel pyrazole-4-carboxamide derivatives containing an oxime ether fragment. By using fungicide-likeness analyses and virtual screening, 24 target compounds with theoretical strong inhibitory effects against fungal succinate dehydrogenase (SDH) were designed and synthesized. Antifungal bioassays showed that the target compound E1 could selectively inhibit the in vitro growth of R. solani, with the EC50 value of 1.1 µg/mL that was superior to that of the agricultural fungicide boscalid (2.2 µg/mL). The observations by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrated that E1 could reduce mycelial density and significantly increase the mitochondrial number in mycelia cytoplasm, which was similar to the phenomenon treated with boscalid. Enzyme activity assay showed that the E1 had the significant inhibitory effect against the SDH from R. solani, with the IC50 value of 3.3 µM that was superior to that of boscalid (7.9 µM). The mode of action of the target compound E1 with SDH was further analyzed by molecular docking and molecular dynamics simulation studies. Among them, the number of hydrogen bonds was significantly more in the SDH-E1 complex than that in the SDH-boscalid complex. This research on the dearomatization strategy of the benzene ring for constructing pyrazole-4-carboxamides containing an oxime ether fragment provides a unique thought to design new antifungal drugs targeting SDH.


Subject(s)
Drug Design , Enzyme Inhibitors , Fungicides, Industrial , Oximes , Pyrazoles , Succinate Dehydrogenase , Succinate Dehydrogenase/antagonists & inhibitors , Succinate Dehydrogenase/chemistry , Succinate Dehydrogenase/metabolism , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Fungicides, Industrial/chemical synthesis , Structure-Activity Relationship , Oximes/chemistry , Oximes/pharmacology , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Fungal Proteins/chemistry , Fungal Proteins/antagonists & inhibitors , Fungal Proteins/metabolism , Molecular Docking Simulation , Rhizoctonia/drug effects , Ethers/chemistry , Ethers/pharmacology , Molecular Structure
6.
Molecules ; 29(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38792162

ABSTRACT

Nsp13, a non-structural protein belonging to the coronavirus family 1B (SF1B) helicase, exhibits 5'-3' polarity-dependent DNA or RNA unwinding using NTPs. Crucially, it serves as a key component of the viral replication-transcription complex (RTC), playing an indispensable role in the coronavirus life cycle and thereby making it a promising target for broad-spectrum antiviral therapies. The imidazole scaffold, known for its antiviral potential, has been proposed as a potential scaffold. In this study, a fluorescence-based assay was designed by labeling dsDNA substrates with a commercial fluorophore and monitoring signal changes upon Nsp13 helicase activity. Optimization and high-throughput screening validated the feasibility of this approach. In accordance with the structural characteristics of ADP, we employed a structural-based design strategy to synthesize three classes of imidazole-based compounds through substitution reaction. Through in vitro activity research, pharmacokinetic parameter analysis, and molecular docking simulation, we identified compounds A16 (IC50 = 1.25 µM) and B3 (IC50 = 0.98 µM) as potential lead antiviral compounds for further targeted drug research.


Subject(s)
Antiviral Agents , Imidazoles , Molecular Docking Simulation , SARS-CoV-2 , Viral Nonstructural Proteins , Imidazoles/chemistry , Imidazoles/pharmacology , SARS-CoV-2/enzymology , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/chemistry , Humans , COVID-19 Drug Treatment , RNA Helicases/antagonists & inhibitors , RNA Helicases/metabolism , RNA Helicases/chemistry , Fluorescent Dyes/chemistry , Methyltransferases
7.
Sci Rep ; 14(1): 11684, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778066

ABSTRACT

The intricate currents of the Northwest Pacific Ocean, with strong manifestations along the westside rim, connect tropical and subtropical gyres and significantly influence East Asian and global climates. The El Niño/Southern Oscillation (ENSO) originates in the tropical Pacific Ocean and disrupts this ocean circulation system. However, the spatiotemporal dependence of the impact of ENSO events has yet to be elucidated because of the complexities of both ENSO events and circulation systems, as well as the increased availability of observational data. We thus combined altimeter and drifter observations to demonstrate the distinct tropical and subtropical influences of the circulation system on ENSO diversity. During El Niño years, the North Equatorial Current, North Equatorial Countercurrent, Mindanao Current, Indonesian Throughflow, and the subtropical Kuroshio Current and its Extension region exhibit strengthening, while the tropical Kuroshio Current weakens. The tropical impact is characterized by sea level changes in the warm pool, whereas the subtropical influence is driven by variations in the wind stress curl. The tropical and subtropical influences are amplified during the Centra Pacific El Niño years compared to the Eastern Pacific El Niño years. As the globe warms, these impacts are anticipated to intensify. Thus, strengthening observation systems and refining climate models are essential for understanding and projecting the enhancing influences of ENSO on the Northwest Pacific Oceanic circulation.

8.
Sci Rep ; 14(1): 11759, 2024 05 23.
Article in English | MEDLINE | ID: mdl-38782997

ABSTRACT

In this randomized controlled trial, 74 patients scheduled for gynecological laparoscopic surgery (American Society of Anesthesiologists grade I/II) were enrolled and randomly divided into two study groups: (i) Group C (control), received sufentanil (0.3 µg/kg) and saline, followed by sufentanil (0.1 µg/kg∙h) and saline; and (ii) Group F (OFA), received esketamine (0.15 mg/kg) and lidocaine (2 mg/kg), followed by esketamine (0.1 mg/kg∙h) and lidocaine (1.5 mg/kg∙h). The primary outcome was the 48-h time-weighted average (TWA) of postoperative pain scores. Secondary outcomes included time to extubation, adverse effects, and postoperative sedation score, pain scores at different time points, analgesic consumption at 48 h, and gastrointestinal functional recovery. The 48-h TWAs of pain scores were 1.32 (0.78) (95% CI 1.06-1.58) and 1.09 (0.70) (95% CI 0.87-1.33) for Groups F and C, respectively. The estimated difference between Groups F and C was - 0.23 (95% CI - 0.58 - 0.12; P = 0.195). No differences were found in any of the secondary outcomes and no severe adverse effects were observed in either group. Balanced OFA with lidocaine and esketamine achieved similar effects to balanced anesthesia with sufentanil in patients undergoing elective gynecological laparoscopic surgery, without severe adverse effects.Clinical Trial Registration: ChiCTR2300067951, www.chictr.org.cn 01 February, 2023.


Subject(s)
Analgesics, Opioid , Gynecologic Surgical Procedures , Ketamine , Lidocaine , Pain, Postoperative , Sufentanil , Humans , Sufentanil/administration & dosage , Sufentanil/adverse effects , Female , Ketamine/administration & dosage , Ketamine/adverse effects , Lidocaine/administration & dosage , Lidocaine/adverse effects , Adult , Gynecologic Surgical Procedures/adverse effects , Gynecologic Surgical Procedures/methods , Pain, Postoperative/drug therapy , Pain, Postoperative/prevention & control , Middle Aged , Analgesics, Opioid/administration & dosage , Analgesics, Opioid/adverse effects , Analgesics, Opioid/therapeutic use , Laparoscopy/adverse effects , Laparoscopy/methods , Anesthesia/methods , Anesthesia/adverse effects , Anesthetics, Local/administration & dosage , Pain Measurement
9.
Elife ; 122024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578670

ABSTRACT

P2X receptors are extracellular ATP-gated ion channels that form homo- or heterotrimers and consist of seven subtypes. They are expressed in various tissues, including neuronal and nonneuronal cells, and play critical roles in physiological processes such as neurotransmission, inflammation, pain, and cancer. As a result, P2X receptors have attracted considerable interest as drug targets, and various competitive inhibitors have been developed. However, although several P2X receptor structures from different subtypes have been reported, the limited structural information of P2X receptors in complex with competitive antagonists hampers the understanding of orthosteric inhibition, hindering the further design and optimization of those antagonists for drug discovery. We determined the cryogenic electron microscopy (cryo-EM) structures of the mammalian P2X7 receptor in complex with two classical competitive antagonists of pyridoxal-5'-phosphate derivatives, pyridoxal-5'-phosphate-6-(2'-naphthylazo-6'-nitro-4',8'-disulfonate) (PPNDS) and pyridoxal phosphate-6-azophenyl-2',5'-disulfonic acid (PPADS), and performed structure-based mutational analysis by patch-clamp recording as well as molecular dynamics (MD) simulations. Our structures revealed the orthosteric site for PPADS/PPNDS, and structural comparison with the previously reported apo- and ATP-bound structures showed how PPADS/PPNDS binding inhibits the conformational changes associated with channel activation. In addition, structure-based mutational analysis identified key residues involved in the PPNDS sensitivity of P2X1 and P2X3, which are known to have higher affinity for PPADS/PPNDS than other P2X subtypes.


Subject(s)
Adenosine Triphosphate , Molecular Dynamics Simulation , Animals , Adenosine Triphosphate/chemistry , Mammals
10.
Chem Commun (Camb) ; 60(32): 4322-4325, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38535993

ABSTRACT

Here, we synthesized a series of cholesteryl-based compounds, whose phases and their transformation can be modulated by temperature and the chain length of the fluoroalkyl moieties. To our knowledge, this is the first time that the phase transition could be modulated with perfluoroalkyl tail engineering in organic single-component ferroelectric crystals.

11.
Plant Physiol ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38527791

ABSTRACT

Auxin, a pivotal regulator of diverse plant growth processes, remains central to development. The auxin-responsive genes auxin/indole-3-acetic acids (AUX/IAAs) are indispensable for auxin signal transduction, which is achieved through intricate interactions with auxin response factors (ARFs). Despite this, the potential of AUX/IAAs to govern the development of the most fundamental biological unit, the single cell, remains unclear. In this study, we harnessed cotton (Gossypium hirsutum) fiber, a classic model for plant single-cell investigation, to determine the complexities of AUX/IAAs. Our research identified two pivotal AUX/IAAs, auxin resistant 2 (GhAXR2) and short hypocotyl 2 (GhSHY2), which exhibit opposite control over fiber development. Notably, suppressing GhAXR2 reduced fiber elongation, while silencing GhSHY2 fostered enhanced fiber elongation. Investigating the mechanistic intricacies, we identified specific interactions between GhAXR2 and GhSHY2 with distinct ARFs. GhAXR2's interaction with GhARF6-1 and GhARF23-2 promoted fiber cell development through direct binding to the AuxRE cis-element in the constitutive triple response 1 (GhCTR1) promoter, resulting in transcriptional inhibition. In contrast, the interaction of GhSHY2 with GhARF7-1 and GhARF19-1 exerted a negative regulatory effect, inhibiting fiber cell growth by activating the transcription of xyloglucan endotransglucosylase/hydrolase 9 (GhXTH9) and cinnamate-4-hydroxylase (GhC4H). Thus, our study reveals the intricate regulatory networks surrounding GhAXR2 and GhSHY2, elucidating the complex interplay of multiple ARFs in AUX/IAA-mediated fiber cell growth. This work enhances our understanding of single-cell development and has potential implications for advancing plant growth strategies and agricultural enhancements.

12.
Vaccine ; 42(7): 1561-1570, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38365485

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccine enables quick upgrade of antigen sequence to combat emerging new variants. In an observer-blinded, randomized, placebo-controlled phase 2 trial, immunologically naïve 300 adults and 150 older participants were enrolled and randomized (1:1:1) to receive two doses of 20 µg or 30 µg of a SARS-CoV-2 mRNA vaccine (SYS6006) or placebo. Adverse events (AEs) were recorded through 30 days after the second dose. Live virus neutralizing antibody (Nab), S1 protein-specific binding antibody (S1-IgG) and cellular immunity were tested. Results showed that robust wild-type Nab response was elicited with geometric mean titers of 91.3 and 84.9 in the adults, and 74.0 and 115.9 in the elders, 14 days following the second dose (Day 35) in the 20-µg and 30-µg groups, respectively. All seroconverted for wild-type Nab except two participants. Nab against Omicron BA.5 was mild. Robust wild-type S1-IgG response was induced with geometric mean concentrations of 2751.0 and 3142.2 BAU/mL in adults, and 2474.1 and 2993.5 BAU/mL in elders at Day 35 in the 20-µg and 30-µg groups, respectively. S1-IgG against Omicron BA.2 was induced. Cellular immunity was elicited, particularly in enzyme-linked immunospot assay. The most frequent AEs were injection-site pain and fever. Most reported AEs were grade 1 or grade 2. The AE incidences were similar following the first dose and second dose. No vaccination-associated serious AE was reported. In conclusion, two-dose vaccination with SYS6006 demonstrated good safety, tolerability and immunogenicity in immunologically naïve healthy participants aged 18 years or more.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Aged , Humans , Antibodies, Neutralizing , Antibodies, Viral , China , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Double-Blind Method , Healthy Volunteers , Immunogenicity, Vaccine , Immunoglobulin G , mRNA Vaccines , SARS-CoV-2
13.
J Hazard Mater ; 468: 133833, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38401215

ABSTRACT

Increasing use of chemical dispersants for oil spills highlights the need to understand their adverse effects on marine microalgae and nutrient assimilation because the toxic components of crude oil can be more bioavailable. We employed the crude oil water-accommodated fraction (WAF) and chemically enhanced WAF (CEWAF) to compare different responses in marine microalgae (Phaeodactylum tricornutum) coupled with stable isotopic signatures. The concentration and proportion of high-molecular-weight polycyclic aromatic hydrocarbons (HMW PAHs), which are key toxic components in crude oil, increased after dispersant addition. CEWAF exposure caused higher percent growth inhibition and a lower chlorophyll-a level of microalgae than those after WAF exposure. Compared with WAF exposure, CEWAF led to an enhancement in the self-defense mechanism of P. tricornutum, accompanied by an increased content of extracellular polymeric substances. 13C-depletion and carbon assimilation were altered in P. tricornutum, suggesting more HMW PAHs could be utilized as carbon sources by microalgae under CEWAF. CEWAF had no significant effects on the isotopic fractionation or assimilation of nitrogen in P. tricornutum. Our study unveiled the impact on the growth, physiological response, and nutrient assimilation of microalgae upon WAF and CEWAF exposures. Our data provide new insights into the ecological effects of dispersant applications for coastal oil spills.


Subject(s)
Diatoms , Microalgae , Petroleum Pollution , Petroleum , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Petroleum/toxicity , Petroleum/analysis , Water , Water Pollutants, Chemical/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity , Polycyclic Aromatic Hydrocarbons/analysis , Carbon
14.
J Plast Reconstr Aesthet Surg ; 90: 305-314, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38394838

ABSTRACT

BACKGROUND: NA OBJECTIVE: Evaluate the safety and feasibility of platelet-rich plasma (PRP) in the treatment of giant congenital melanocytic nevi (GCMN) in children with human acellular dermal matrix (HADM) transplantation. PATIENTS AND METHODS: A total of 22 children with GCMN were included in the study. They were divided into an experimental and a control group. The experimental group used the method of HADM with Razor Autologous Skin Graft combined with PRP to repair skin and soft tissue defects after giant nevus resection (Group A, n = 11). The control group was treated with HADM with Razor Autologous Skin Graft (Group B, n = 11) only. To compare the survival rate of skin grafts, we used the Vancouver Scar Scale (VSS) for the postoperative skin graft area and the Patient and Observer Scar Assessment Scale (POSAS) to compare the two groups of patients. RESULTS: There was no statistically significant difference in age, gender, location of giant nevi, and pathological classification between Group A and Group (P > 0.05). The survival rate of skin grafting and the VSS and POSAS scores of scar tissue in group A were superior to those of group B (P < 0.05). CONCLUSIONS: PRP has improved the survival rate of composite skin grafting in children with GCMN, and long-term satisfactory prognosis of scar healing. Therefore, we consider this treatment method a valuable contribution to clinical practice.


Subject(s)
Acellular Dermis , Nevus, Pigmented , Platelet-Rich Plasma , Skin Neoplasms , Child , Humans , Skin Transplantation/methods , Cicatrix/surgery , Nevus, Pigmented/surgery , Nevus, Pigmented/congenital
15.
Clin Imaging ; 108: 110100, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38341881

ABSTRACT

PURPOSE: To investigate the value of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) in breast cancer (BC) with second primary malignancies (SPMs). MATERIALS AND METHODS: 149 BC patients (149/1419, 10.5 %) ultimately diagnosed with SPMs were included in the study. The following data were evaluated: age, location, the treatment of the first BC, the interval between the first BC and SPMs, the maximum diameter of SPMs, the maximum standardized uptake value (SUVmax) of SPMs, and SPMs metastases. The overall survival (OS) and progression-free survival (PFS) of follow-up patients were analyzed. The diagnostic efficiency of 18F-FDG PET/CT for SPMs and consistency with the pathological findings were calculated. RESULTS: The most common SPMs of BC was lung cancer (81/149, 54.4 %), particularly early-stage lung adenocarcinoma. There were the shorter maximum diameter of SPMs, the lower SUVmax of SPMs, and the fewer SPMs metastases in the lung cancer group than non-lung cancer group (P<0.001). The OS and PFS of the follow-up patients in the lung cancer group were longer than non-lung cancer group (P<0.001). The SPMs metastases was independent prognostic indicator of OS. The pathological grouping and the SPMs metastases were independent prognostic indicators of PFS. 18F-FDG PET/CT efficacy in diagnosing SPMs in BC patients was high. Compared with the pathological findings, the consistency was good (P = 0.010). CONCLUSION: Applying 18F-FDG PET/CT in BC patients might be helpful in detecting SPMs and partially predicting patient prognosis, in addition to its primary function in the diagnosis and staging of BC.


Subject(s)
Breast Neoplasms , Lung Neoplasms , Neoplasms, Second Primary , Humans , Female , Positron Emission Tomography Computed Tomography/methods , Fluorodeoxyglucose F18 , Breast Neoplasms/diagnostic imaging , Neoplasms, Second Primary/diagnostic imaging , Prognosis , Lung Neoplasms/diagnostic imaging , Retrospective Studies , Radiopharmaceuticals
16.
Small ; : e2308715, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38412419

ABSTRACT

Biomolecular piezoelectric materials show great potential in the field of wearable and implantable biomedical devices. Here, a self-assemble approach is developed to fabricating flexible ß-glycine piezoelectric nanofibers with interfacial polarization locked aligned crystal domains induced by Nb2 CTx nanosheets. Acted as an effective nucleating agent, Nb2 CTx nanosheets can induce glycine to crystallize from edges toward flat surfaces on its 2D crystal plane and form a distinctive eutectic structure within the nanoconfined space. The interfacial polarization locking formed between O atom on glycine and Nb atom on Nb2 CTx is essential to align the ß-glycine crystal domains with (001) crystal plane intensity extremely improved. This ß-phase glycine/Nb2 CTx nanofibers (Gly-Nb2 C-NFs) exhibit fabulous mechanical flexibility with Young's modulus of 10 MPa, and an enhanced piezoelectric coefficient of 5.0 pC N-1 or piezoelectric voltage coefficient of 129 × 10-3 Vm N-1 . The interface polarization locking greatly improves the thermostability of ß-glycine before melting (≈210°C). A piezoelectric sensor based on this Gly-Nb2 C-NFs is used for micro-vibration sensing in vivo in mice and exhibits excellent sensing ability. This strategy provides an effective approach for the regular crystallization modulation for glycine crystals, opening a new avenue toward the design of piezoelectric biomolecular materials induced by 2D materials.

17.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(1): 208-213, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38387923

ABSTRACT

OBJECTIVE: To explore the expression of microRNA-3162-3p in different clinical stages of childhood primary immune thrombocytopenia (ITP) and its significance. METHODS: Ninety-six children with ITP were enrolled and divided into new diagnosis group (n=40), persistent group (n=30) and chronic group (n=26) according to the course of disease. 80 healthy children were selected as the control group. Peripheral blood mononuclear cells (PBMNC) of ITP children and healthy children were isolated and cultured, and the expression of microRNA-3162-3p in PBMNC of subjects was detected by real-time fluorescence quantitative PCR. The contents of IL-17, IL-23, IL-10 and TGF-ß in PBMNC of subjects were determined by ELISA. The correlation between microRNA-3162-3p and platelet count, IL-17, IL-23, IL-10 and TGF-ß was analyzed. RESULTS: Compared with the control group, the expression of microRNA-3162-3p and IL-10 in PBMNC and platelet count of ITP children were significantly decreased(P < 0.05), while IL-17, IL-23 and TGF-ß were significantly increased (P < 0.05). With the prolongation of the disease course, the expressions of microRNA-3162-3p and IL-10 in PBMNC and platelet count were significantly decreased(P < 0.05), while the expressions of IL-17, IL-23 and TGF-ß were significantly increased (P < 0.05). The expression of microRNA-3162-3p in PBMNC was positively correlated with platelet count and IL-10 (r =0.716, 0.667), and negatively correlated with IL-17, IL-23, and TGF-ß (r =-0.540, -0.641, -0.560). CONCLUSION: MicroRNA-3162-3p expression is significantly reduced in PBMNC of children with ITP, and is involved in the regulation of Th17/Treg imbalance, which can be used as a potential therapeutic target of ITP.


Subject(s)
MicroRNAs , Purpura, Thrombocytopenic, Idiopathic , Child , Humans , Purpura, Thrombocytopenic, Idiopathic/genetics , Interleukin-10 , Interleukin-17 , Leukocytes, Mononuclear , Transforming Growth Factor beta , Interleukin-23
18.
J Colloid Interface Sci ; 661: 977-986, 2024 May.
Article in English | MEDLINE | ID: mdl-38330669

ABSTRACT

In this work, a straightforward method for synthesizing fullerene derivatives with tentacle structures has been explored for monitoring environmental humidity, which involves introducing sulfonate onto the fullerenes. The structure and number of polar groups in three fullerene derivatives determined by a series of structural tests greatly affect their hydrophilicity and morphology, resulting in changes in humidity sensitive properties. In particular, the hysteresis and response time of the sensors display a great correlation with hydrophilicity. C60-Ho, the best performing derivative of this work, has exhibited high response values (∼3500 times), good linearity (R2 = 97.3 %), and rapid response/recovery times (0.3/4.4 s), making it suitable for various applications such as non-contact detection of respiration, finger distance, and soil humidity.

19.
ACS Appl Mater Interfaces ; 16(7): 9117-9125, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38330209

ABSTRACT

Organic solar cells (OSCs) with high performance were prepared using poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and [2-(3,6-dibromo-9H-carbazol-9-yl)ethyl]phosphonic acid (Br-2PACz) double-layer films as the anode interface. By spin-coating a layer of Br-2PACz on PEDOT:PSS to form a PEDOT:PSS/Br-2PACz dual-anode interface, both the Jsc and FF of the device can be increased simultaneously, resulting in a high Jsc of 27.84 mA cm-2 and a high FF of 78.18%. The promising result indicates that the PEDOT:PSS/Br-2PACz dual-anode interface is an effective way to improve the performance of OSCs. The improvement of device performance is mainly attributed to (1) improved interface conductivity; (2) increased hole mobility and more balanced carrier transport efficiency; and (3) optimized morphology, which well explains the increase of Jsc and FF of the device. In addition, the OSC based on the PEDOT:PSS/Br-2PACz dual-anode interface exhibits exceptional stability, as it can maintain 94.7% of its initial efficiency even after 500 h of storage in a nitrogen environment. This work provides a promising strategy for improving the efficiency and stability of OSCs by dual-anode interface modulation.

20.
PhytoKeys ; 238: 127-146, 2024.
Article in English | MEDLINE | ID: mdl-38420600

ABSTRACT

Phlomoides is one of the largest genera of Lamiaceae with approximately 150-170 species distributed mainly in Eurasia. In this study, we describe and illustrate a new species, P.henryi, which was previously misidentified as P.bracteosa, from Yunnan Province, southwest China. Molecular phylogenetic analyses revealed that P.henryi is found within a clade in which most species lack basal leaves. In this clade, the new species is morphologically distinct from P.rotata in having an obvious stem and, from the rest, by having transparent to white trichomes inside the upper corolla lip. In addition, micro-features of trichomes on the calyx and leaf epidermis can differentiate the new species from other species grouped in the same clade and a key, based on trichome morphology for these species, is provided. The findings demonstrate that the use of scanning electron microscopy can reveal inconspicuous morphological affinities amongst morphologically similar species and play an important role in the taxonomic study of the genus Phlomoides.

SELECTION OF CITATIONS
SEARCH DETAIL
...