Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Publication year range
2.
Eur Radiol ; 33(6): 4007-4015, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36648552

ABSTRACT

OBJECTIVES: We assessed muscle mass and function using ultrasound (US) and shear wave elastography (SWE) for sarcopenia in elderly patients with type 2 diabetes. METHODS: There were 84 patients with type 2 diabetes enrolled in this study; of these, 30 had sarcopenia and 54 did not. We measured appendicular skeletal muscle mass index (ASMI), handgrip strength, calf circumference, 6-m walking speed, and 5-time chair stand test. All patients were in the supine position with their knees in straight and bent poses in turn. The US-derived thickness (Tstraight, Tbent), cross-sectional area (CSAstraight, CSAbent), and SWE (SWEstraight, SWEbent) of the rectus femoris muscle (RFM) were measured and the differences (ΔT, ΔCSA, ΔSWE) were calculated. We assessed the correlations of clinical indicators with US and SWE features. We then compared the clinical indicators and US and SWE features between patients with and without sarcopenia to determine independent predictors. Diagnostic models were established based on these independent predictors. RESULTS: The ASMI was correlated with Tbent (r = 0.57, p < 0.001) and CSAbent (r = 0.50, p < 0.001). Handgrip strength was correlated with Tbent (r = 0.53, p < 0.001) and CSAbent (r = 0.51, p < 0.001). Between patients with and without sarcopenia, the indicators of age, ΔCSA, and ΔSWE were statically different (all p ≤ 0.001). Based on these results, a diagnostic model for sarcopenia was established with 83.3% sensitivity, 83.3% specificity, and 83.3% accuracy. CONCLUSIONS: In elderly people with type 2 diabetes, sarcopenia patients had smaller muscle CSA and less stiffness than non-sarcopenia patients. US and SWE might be useful to screen them. KEY POINTS: • Sarcopenia is common in elderly people with type 2 diabetes. • Ultrasound and shear wave elastography might be useful methods for quantitatively assessing muscle mass and strength. • Ultrasound and shear wave elastography might be useful methods for screening sarcopenia in elderly patients with type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Elasticity Imaging Techniques , Sarcopenia , Humans , Aged , Elasticity Imaging Techniques/methods , Hand Strength , Diabetes Mellitus, Type 2/complications , Ultrasonography , Sarcopenia/complications , Sarcopenia/diagnostic imaging , Quadriceps Muscle , Muscle, Skeletal/diagnostic imaging
3.
Ann Transl Med ; 9(18): 1444, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34733996

ABSTRACT

BACKGROUND: To evaluate whether MicroPure imaging, an ultrasound (US) image-processing technique with computer-aided analysis, can quantitatively detect crystal dissolution during urate-lowering therapy (ULT) in gout. METHODS: This was a prospective study of gout patients requiring ULT. The first metatarsophalangeal joints were examined using US and MicroPure before and after 3 months of ULT. Elementary lesions of gout, including the double contour sign (DCS), aggregates, tophi, erosion, and other US features were recorded at baseline and 3 months. MicroPure imaging features were automatically calculated by a self-developed software. Patients were divided into goal-achieved and goal-not-achieved groups according to their urate levels at 3 months. The US and MicroPure imaging features of the two groups were analyzed at baseline and 3 months. RESULTS: A total of 55 consecutive patients were enrolled (25: goal-achieved group; 30: goal-not-achieved group). US findings demonstrated that the power Doppler signal grade decreased at 3 months, regardless of the group (both P<0.05). From baseline to 3 months, tophi size and the DCS reduced in the goal-achieved group (both P<0.05), while the US aggregate features showed no difference (P=0.250). However, on the MicroPure imaging, the number and density of aggregates at 3 months decreased in the goal-achieved group (both P<0.05). There were no significant changes at 3 months in any of the MicroPure imaging features in the goal-not-achieved group (all P>0.05). CONCLUSIONS: In comparison with B-mode US, computer-aided MicroPure imaging can sensitively and quantitatively detect aggregate dissolution during effective ULT after only 3 months of treatment.

4.
Ultrasound Med Biol ; 47(10): 2910-2920, 2021 10.
Article in English | MEDLINE | ID: mdl-34284933

ABSTRACT

The purpose of the study was to evaluate the value of high-frequency ultrasound (HFUS) for differentiating invasive basal cell carcinomas (BCCs) from non-invasive BCCs. We established a prediction model based on ultrasound features and validated it further. One hundred patients in the pilot cohort and another 43 in the validation cohort were evaluated. All patients underwent HFUS examinations by the same radiologist, and then were divided on the basis of pathology into invasive and non-invasive types. With respect to growth pattern, 60.5% of invasive BCCs had an irregular pattern, whereas 89.5% of non-invasive BCCs had a nodular or crawling pattern (p < 0.001). As for the layers involved, the more invasive BCCs broke through the dermis compared with non-invasive BCCs (23.3% vs. 1.8%) (p < 0.001). With respect to intralesional hyperechoic spot distribution, invasive and non-invasive BCCs tended to be clustered and absent/scattered-like, respectively (55.8% vs. 91.2%) (p < 0.001). On the basis of the aforementioned features, a prediction model was established with accuracies of 84.0% and 76.7%, respectively, in the pilot and validation cohorts. HFUS holds promise for the differentiation of the invasiveness of BCCs and is helpful in its clinical management.


Subject(s)
Carcinoma, Basal Cell , Skin Neoplasms , Carcinoma, Basal Cell/diagnostic imaging , Humans , Skin Neoplasms/diagnostic imaging , Ultrasonography
5.
Acta Pharmaceutica Sinica ; (12): 1357-1363, 2020.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-823312

ABSTRACT

Two-pore domain potassium channels (K2P) make up a subfamily of potassium channels discovered in the 1990s, and TREK-1 is the most widely studied subtype of K2P. TREK-1 is widely expressed in the body and especially in the central nervous system, where its main role is to control cell excitability and maintain the membrane potential below the depolarization threshold. It thereby participates in regulating various physiological and pathological processes. TREK-1 is also a potential drug target in many diseases. It is known that many marketed drugs can affect the function of TREK-1, but currently there are no specific TREK-1 modulators or drugs. We review the structure, distribution and regulation of TREK-1 and focus on recent progress in understanding the pharmacology of TREK-1 and its role in neuroprotection, depression, anesthesia and epilepsy. The research status of TREK-1 modulators is discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...