Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Ying Yong Sheng Tai Xue Bao ; 34(10): 2644-2654, 2023 Oct.
Article in Chinese | MEDLINE | ID: mdl-37897271

ABSTRACT

We examined the responses of physiological and leaf anatomic structural characteristics of six Helleborus orientalis cultivars to different degrees of drought stress. A membership function was used to evaluate drought resis-tance and identify physiological and leaf anatomical indicators that exhibited a stronger correlation with drought tolerance. The results showed that leaf thickness, leaf area per unit mass and soluble protein levels of the six cultivars significantly decreased with the increases of drought stress. Net photosynthetic rate, stomatal conductance, and transpiration rate of leaves increased first and then decreased, while the intercellular CO2 concentration decreased. The relative electrical conductivity, MDA, and H2O2 contents of leaves were increased. Soluble saccharide and proline contents, and antioxidant enzyme activities were first elevated and then decreased. With the increases of drought stress, the ratio of palisade tissue thickness to sponge tissue thickness and stomatal density increased. Key indicators and relativities in evaluating drought resistance of those cultivars were proline, soluble sugars, and the ratio of palisade tissue thickness to sponge tissue thickness. H. orientalis 'Anemone Red' and H. orientalis 'Ane-mone Red spotted' had better drought resistance, which could be the excellent parental materials for the cultivation of new drought-resistant cultivars in the future.


Subject(s)
Droughts , Helleborus , Drought Resistance , Helleborus/metabolism , Hydrogen Peroxide , Photosynthesis/physiology , Plant Leaves/physiology , Antioxidants/metabolism , Proline , Stress, Physiological , Water/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...