Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Biomed Anal ; 245: 116191, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38728950

ABSTRACT

A method involving chitosan-assisted magnetic-stirring-enhanced mechanical amorphous dispersion extraction was developed and utilized to extract hydrophobic anthraquinones from Rhei Radix et Rhizoma prior to ultrahigh performance liquid chromatography analysis. Incorporating natural chitosan as a dispersant facilitated the extraction of hydrophobic anthraquinones using purified water, considerably enhancing the eco-friendliness of the extraction methodology. To optimize extraction efficiency, an extensive evaluation of the crucial parameters influencing rhubarb yield was conducted. Furthermore, a response surface methodology was applied to optimize the extraction conditions. Under these optimized conditions, the method exhibited linearity ranges of 0.1-100 µg/mL, with correlation coefficients between 0.9990 and 0.9998. The method's intraday (n = 6) and interday (n = 6) precision levels were maintained at ≤3.58%, which was considered to be within acceptable limits. The computed detection and quantification limits were 16.54-24.60 and 54.91-82.04 ng/mL, respectively. Consequently, this optimized method was effectively employed to extract five specific compounds (aloe-emodin, emodin, rhein, chrysophanol, and physcion) from Rhei Radix et Rhizoma, achieving recoveries ranging from 86.43% to 102.75%.


Subject(s)
Anthraquinones , Hydrophobic and Hydrophilic Interactions , Plants, Medicinal , Rheum , Anthraquinones/chemistry , Anthraquinones/analysis , Chromatography, High Pressure Liquid/methods , Rheum/chemistry , Plants, Medicinal/chemistry , Chitosan/chemistry , Phytochemicals/chemistry , Phytochemicals/analysis , Phytochemicals/isolation & purification , Water/chemistry , Emodin/analogs & derivatives , Emodin/chemistry , Emodin/analysis , Limit of Detection , Plant Extracts/chemistry
2.
Anal Chim Acta ; 1297: 342359, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38438236

ABSTRACT

BACKGROUND: Microemulsion electrokinetic chromatography (MEEKC) is a mode of capillary electrophoresis with a wide range of applications in which microemulsion is utilized as background electrolyte to achieve the separation of analytes. Microemulsions are composed of oil droplets, aqueous buffer, surfactant, and co-surfactant. Currently, conventional organic reagents act as the most commonly used oil phase in microemulsions, which are unfriendly to the environment. Recently, deep eutectic solvent (DES) has become a new type of eco-friendly solvent due to its non-toxicity. Therefore, it is of great value to establish a new MEEKC method by replacing conventional organic reagents as the oil phase with DES. RESULTS: The novel DES/W MEEKC method was established for phenolic compounds in Senecio scandens samples. Single-factor experiments and response surface methodology were performed to systematically optimize the crucial parameters for the method, including the type and content of the oil phase, surfactant content, concentration of borax buffer, and pH of the background solution. Under the optimized conditions, satisfactory regression curves were established for all standard analytes with correlation coefficients ≥0.9990. The method featured high sensitivity and favorable accuracy, with the instrumental detection limit in the range of 0.22-1.04 µg/mL, and intraday and interday precision for migration time expressed as relative standard deviations of 0.18-0.82% and 1.25-2.50%, respectively. The DES/W MEEKC method was successfully applied to Senecio scandens with good recoveries of 87.72-106.99%. In conclusion, the newly established DES/W MEEKC method is highly efficient, green and environmentally friendly. SIGNIFICANCE: DES is considered a green and efficient solvent. The DES/W MEEKC method is highly efficient and environmentally friendly. Actually, the method provides a novel and effective analytical tool for the simultaneous separation and determination of multiple phenolic compounds, especially in complex plant matrices. In the future, the DES/W MEEKC method still has the prospect of being widely used in the separation of other complex phytochemicals.

3.
Food Res Int ; 175: 113769, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38129060

ABSTRACT

This experiment aimed to establish a green, simple and highly sensitive method (supercritical fluid chromatography (SFC) coupled with ion mobility quadrupole time-of-flight mass spectrometry (IM-Q-TOF/MS)) for the detection of multiple pesticides in foods. During the experiments, several important SFC parameters, such as stationary phase, modifier, make-up solution, back-temperature and back-pressure were optimized. Here, single-field collision cross section (CCS) values and multifield CCS values of 20 pesticides were examined by IM-Q-TOF/MS as highly specific parameters with excellent experimental precision. In addition, based on accurate mass matching and fragment ion comparison, mass fragments were obtained by IM-Q-TOF/MS, which elucidated the regularities of compound structure and characteristic fragment ions. Under the optimized conditions, satisfactory linearity (R2 ≥ 0.9989) and recoveries (79.60 % to 112.97 %) were obtained. The intra- and interday precisions were favorable, with RSDs lower than 4.91 and 7.65 %, respectively. Additionally, the method showed low limits of detection (0.1-8.8 ng/mL). The proposed method has been successfully applied to the highly sensitive detection of phenylurea herbicide, triazine herbicides, organophosphorus pesticide, pyrethroid insecticide and acaricide in yam and potato.


Subject(s)
Chromatography, Supercritical Fluid , Pesticide Residues , Pesticides , Pesticide Residues/analysis , Pesticides/analysis , Chromatography, Supercritical Fluid/methods , Organophosphorus Compounds/analysis , Mass Spectrometry
4.
J Chromatogr A ; 1714: 464563, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38101248

ABSTRACT

An on-line enrichment and separation of multiple derivatized monosaccharides with cyclodextrin-encapsulated sweeping (CDES) by micellar electrokinetic chromatography (MEKC) was presented. Five monosaccharides (L-(-)-Mannose, D-(+)-Glucose, D-(-)-Ribose, D-(+)-Xylose, and L-(+)-Rhamnose) were derivatized with 1-phenyl-3-methyl-5-pyrazolone, subsequently concentrated and separated by MEKC. The optimized conditions were as follows: 50 mM phosphoric acid (PA), 100 mM sodium dodecyl sulfate (SDS), and 30 % (v/v) methanol in background solution; 140 s injection of sample solution containing 50 mM CD and 100 mM PA, followed by 90 s injection of 40 mM SDS solution. Under the optimized conditions, the correlation coefficients ≥ 0.9953, and the limits of detection ranged from 4.2 to 7.4 ng/mL. Relative standard deviation values ranged from 0.24-4.23 %, and sensitivity enrichment factors were in the range of 53-82 compared with typical injection (50 mbar, 3 s). The CDES-MEKC method was successfully applied to Jujube with good recoveries of 84.22-104.33 %. The method provides new ideas for the on-line enrichment and detection of trace monosaccharides and even other target analytes in foods with complex matrices.


Subject(s)
Chromatography, Micellar Electrokinetic Capillary , Cyclodextrins , Chromatography, Micellar Electrokinetic Capillary/methods , Cyclodextrins/chemistry , Monosaccharides , Fruit , Micelles
5.
J Chromatogr A ; 1706: 464258, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37544236

ABSTRACT

A novel online two-step pressure injection-assisted stacking preconcentration method, which involves sweeping and affinity micelles in micellar electrokinetic chromatography was developed to simultaneously measure various organic anions. The micellar solution was a mixed solution that contained 0.3 mM didodecyldimethylammonium bromide and 20 mM borax. After the micellar solution was injected for 60 s, the tested analytes prepared in 20 mM borax were introduced into the capillary for 150 s. The key experimental factors that influenced the separation and sensitivity were investigated and optimized, including the concentration and injection time of the micellar solution, the concentration of borax in the sample solution, the concentration of sodium dodecyl sulfate and borax in the background electrolyte (BGE), the content of acetonitrile in the BGE and the injection time of the sample solution. Compared with typical injection methods, this method achieved sensitivity enhancement factors ranging from 85 to 97 under optimized conditions. Good linearity for matrix-matched calibration was established for all analytes with R2 values of 0.9986-0.9996. The intraday (n = 6) and interday (n = 6) precisions of the method were less than 2.85% when expressed as relative standard deviations. When the method was applied to analyze rice and dried ginger samples, analyte recoveries ranged from 85.81% to 106.59%. Through sweeping and affinity micelles, stacking preconcentration method was successfully employed to analyze trace amounts of fenoprop and 2,4-dichlorophenoxyacetic acid in rice and dried ginger samples.


Subject(s)
Chromatography, Micellar Electrokinetic Capillary , Herbicides , Herbicides/analysis , Chromatography, Micellar Electrokinetic Capillary/methods , Micelles , Anions
6.
J Chromatogr A ; 1702: 464090, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37245356

ABSTRACT

A unique and effective comprehensive two-dimensional liquid chromatography system was established and applied for the analysis of bioactive components in honeysuckle. Under the optimal conditions, Eclipse Plus C18 (2.1 × 100 mm, 3.5 µm, Agilent) and SB-C18 (4.6 × 50 mm, 1.8 µm, Agilent) columns were chosen for the first dimension (1D) and the second dimension (2D) separation. The optimal flow rates of 1D and 2D were 0.12 mL/min and 2.0 mL/min, respectively. Additionally, the proportion of organic solution was optimized to enhance orthogonality and integrated shift, and full gradient elution mode was adopted to improve chromatographic resolution. Furthermore, a total of 57 compounds were identified by molecular weight, retention time and collision cross-section value obtained from ion mobility mass spectrometry. Based on the data obtained from the principal component analysis, partial least squares discriminant analysis, and hierarchical cluster analysis, the categories of honeysuckle in different regions were significantly different. Moreover, the half maximal inhibitory concentration values of most samples were between 0.37 and 1.55 mg/mL, and most samples were potent α-glucosidase inhibitors, which is better for the evaluation of the quality of drugs from two aspects of substance content and activity.


Subject(s)
Lonicera , Chemometrics , Chromatography, High Pressure Liquid/methods , Mass Spectrometry/methods
7.
Food Chem ; 417: 135894, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-36917908

ABSTRACT

In this study, a cyclodextrin aqueous solution was used as an environmentally friendly eluent to simultaneously extract active and toxic compounds from food matrices with the aid of nanographite-assisted matrix solid phase dispersion microextraction (NG-MSPDM). The NG-MSPDM procedure was optimized by single-factor experiments and response surface methodology to obtain optimum conditions. The proposed method achieved excellent linearity at 0.10-20 µg/mL for all target analytes with a coefficient of correction (R2) ≥ 0.9909, limits of detection < 52.01 ng/mL, satisfactory reproducibility below 3.21 %, and acceptable recoveries of 82.0-112 %. To accurately determine the target components in the complex matrix, collision cross-section values of the analytes were obtained using ion mobility quadrupole time-of-flight mass spectrometry (IM-Q-TOF/MS). Results indicated that the NG-MSPDM method successfully achieved the simultaneous extraction of flavonoids and phenoxyacetic herbicides from Alpinia officinarum.


Subject(s)
Food , Solid Phase Microextraction , Chromatography, High Pressure Liquid/methods , Reproducibility of Results , Solid Phase Extraction/methods , Solid Phase Microextraction/methods , Solvents/chemistry , Nanostructures , Graphite/chemistry
8.
Int J Biol Macromol ; 227: 986-1000, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36464194

ABSTRACT

The mixed enzymes-assisted mechanical bio-extraction method was first used to extract polysaccharides from Dendrobium officinale. Different parameters including the ratio of enzyme, the amount of enzyme, the grinding time, the extraction time and the solid/liquid ratio were investigated by single factor experiments and multifactorial experiments. Through the response surface methodology the optimal extraction conditions were obtained with the ratio of cellulase to pectinase was 2: 1 and total amount of enzyme was 0.23 mg, the grinding time of 11.48 min, the extraction time of 5.99 min. The obtained polysaccharide extracts were hydrolyzed and derivatized and then injected into high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF/MS) for monosaccharide composition analysis. After optimization of the chromatographic conditions (including mobile phase and column), twelve monosaccharides were successfully determined within 20 min. The proposed method provided satisfactory linearity with the correlation coefficients higher than 0.99, suitable recoveries (81.46-114.92 %), acceptable reproducibility ranging from 0.06 % to 4.77 %, low limits of detection (0.70-45.45 ng/mL). Compared with other methods, this method makes the extraction efficiency much higher and has the advantages of simple operation, environmental friendliness and mild extraction conditions. Therefore, this method can be used for the extraction of polysaccharides from plants and the determination of monosaccharides and has the potential to be used in more areas.


Subject(s)
Dendrobium , Monosaccharides , Monosaccharides/analysis , Chromatography, High Pressure Liquid/methods , Dendrobium/chemistry , Reproducibility of Results , Polysaccharides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...