Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 273(Pt 2): 132769, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38823745

ABSTRACT

Paper-based test film material is widely used in a variety of test instruments for different applications. The enzyme activity test paper sheet is one of the most popularly used test papers. Here we present a novel fabrication of paper-based enzyme activity test paper without cationic resin added in. The chemical pulping fibers were first beaten to different degrees (from 14.6 to 41.5°SR) with a PFI beater. After that, the fibers were modified with a cationic agent (3-chloro-2-hydroxypropyl trimethyl ammonium chloride) under the system of alkali and water solution. Finally, the test papers were made with the modified fiber by a regular paper former in lab. The results showed that beating is beneficial for the improvement of the cationization reaction which is indicated by the Zeta potential, FTIR and EDS. The main mechanisms involved are the destruction of crystalline zone, increase of free hydroxyl group and defibrillation. This hypothesis was supported by the SEM, XRD and fiber analyzer. Beating under the optimized condition, the wet strength and liquid absorbability of test paper can meet the application requirement, and the test results of enzyme activity are quite close to those of commercial test papers.

2.
Int J Biol Macromol ; 256(Pt 2): 128290, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37992926

ABSTRACT

The main purpose of this paper was to systematically evaluate the effect of lignin, which was fractioned by green solvents into different molecular weights and used as polyol in the production of polyurethane foams (PUF). The results indicated that the foams prepared with the lower molecular weight lignin had uniform and complete pore structure and improved the mechanical strength. However, the higher molecular weight fraction lignin improved the density and thermal stability of the foam more significantly at the expense of inferior mechanical strength and pore structure deficiency. When the substitution degree of lignin in the PUF was 2 %-30 %, 99.13 % of the lowest molecular weight lignin was participated in the reaction to produce PUF, which improved the elongation at break (Eb) and tensile strength (Ts) of PUF to 834 % and 0.90 MPa, respectively. Also, thermal stability and the amount of unreacted lignin in PUF were increased at a higher substitution degree of lignin in PUF.


Subject(s)
Lignin , Polymers , Polyurethanes , Molecular Weight
3.
Int J Biol Macromol ; 207: 531-540, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35296437

ABSTRACT

The molecular weight is one of the most important factors influencing the utilization of industrial lignin obtained from chemical pulping process. In this paper, a facile operative green solvent system was successfully developed for molecular weight-controllable fractionation of industrial alkali lignin (IAL) at room temperature. The results showed that through adjusting the ratio of water, ethanol and γ-Valerolactone (GVL), the industrial lignin was fractionated into six levels with molecular weight stepwise controllable from low to high. The fractionation is a physical process according to FTIR and 2D-HSQC NMR analysis, and the chemical structure of lignin has not changed. Additionally, the polydispersity of fractionated lignin with higher molecular weight tends to be narrower. The content of hydroxyl and carboxyl group is higher for the fractionated lignin with lower molecular weight, which would be beneficial for the chemical reactivity in the down-stream application.


Subject(s)
Alkalies , Lignin , Chemical Fractionation/methods , Lignin/chemistry , Molecular Weight , Solvents/chemistry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...