Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 18(4): 3125-3133, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38227480

ABSTRACT

Monolayered transition-metal dichalcogenides (TMDs) are easily exposed to air, and their crystal quality can often be degraded via oxidation, leading to poor electronic and optical device performance. The degradation becomes more severe in the presence of defects, grain boundaries, and residues. Here, we report crack propagation in pristine TMD monolayers grown by chemical vapor deposition under ambient conditions and light illumination. Under a high relative humidity (RH) of ∼60% and white light illumination, the cracks appear randomly. Photo-oxidative cracks gradually propagated along the grain boundaries of the TMD monolayers. In contrast, under low RH conditions of ∼2%, cracks were scarcely observed. Crack propagation is predominantly attributed to the accumulation of water underneath the TMD monolayers, which is preferentially absorbed by hygroscopic alkali metal-based precursor residues. Crack propagation is further accelerated by the cyclic process of photo-oxidation in a basic medium, leading to localized tensile strain. We also found that such crack propagation is prevented after the removal of alkali metals via the transfer of the sample to other substrates.

2.
ACS Nano ; 16(6): 8851-8859, 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35713417

ABSTRACT

Vertical van der Waals heterostructures (vdWhs), which are made by layer-by-layer stacking of two-dimensional (2D) materials, offer great opportunities for the development of extraordinary physics and devices such as topological superconductivity, robust quantum Hall phenomenon, electron-hole pair condensation, Coulomb drag, and tunneling devices. However, the size of vdWhs is still limited to the order of a few micrometers, which restricts the large-scale roll-to-roll processes for industrial applications. Herein, we report the sequential growth of a 14 in. vertical vdWhs on a rollable Al foil via chemical vapor deposition. By supplying chalcogen precursors to liquid transition-metal precursor-coated Al foils, we grew a wide range of individual 2D transition-metal dichalcogenide (TMD) films, including MoS2, VS2, ReS2, WS2, SnS2, WSe2, and vanadium-doped MoS2. Additionally, by repeating the growth process, we successfully achieved the layer-by-layer growth of ReS2/MoS2 and SnS2/ReS2/MoS2 vdWhs. The chemically inert Al native oxide layer inhibits the diffusion of chalcogen and metal atoms into Al foils, allowing for the growth of diverse TMDs and their vdWhs. The conductive Al substrate enables the effective use of vdWhs/Al as a hydrogen evolution reaction electrocatalyst with a transfer-free process. This work provides a robust route for the commercialization of 2D TMDs and their vdWhs at a low cost.

3.
Adv Mater ; 34(10): e2106551, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34962658

ABSTRACT

Magnetic order has been proposed to arise from a variety of defects, including vacancies, antisites, and grain boundaries, which are relevant in numerous electronics and spintronics applications. Nevertheless, its magnetism remains controversial due to the lack of structural analysis. The escalation of ferromagnetism in vanadium-doped WSe2 monolayer is herein demonstrated by tailoring complex configurations of Se vacancies (SeVac ) via post heat-treatment. Structural analysis of atomic defects is systematically performed using transmission electron microscopy (TEM), enabled by the monolayer nature. Temperature-dependent magnetoresistance hysteresis ensures enhanced magnetic order after high-temperature heat-treatment, consistent with magnetic domain analysis from magnetic force microscopy (MFM). The vanadium-Se vacancy pairing is a key to promoting ferromagnetism via spin-flip by electron transfer, predicted from density-functional-theory (DFT) calculations. The approach toward nanodefect engineering paves a way to overcome weak magnetic order in diluted magnetic semiconductors (DMSs) for renovating semiconductor spintronics.

4.
Adv Mater ; 33(15): e2006601, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33694212

ABSTRACT

Growth of 2D van der Waals layered single-crystal (SC) films is highly desired not only to manifest the intrinsic physical and chemical properties of materials, but also to enable the development of unprecedented devices for industrial applications. While wafer-scale SC hexagonal boron nitride film has been successfully grown, an ideal growth platform for diatomic transition metal dichalcogenide (TMdC) films has not been established to date. Here, the SC growth of TMdC monolayers on a centimeter scale via the atomic sawtooth gold surface as a universal growth template is reported. The atomic tooth-gullet surface is constructed by the one-step solidification of liquid gold, evidenced by transmission electron microscopy. The anisotropic adsorption energy of the TMdC cluster, confirmed by density-functional calculations, prevails at the periodic atomic-step edge to yield unidirectional epitaxial growth of triangular TMdC grains, eventually forming the SC film, regardless of the Miller indices. Growth using the atomic sawtooth gold surface as a universal growth template is demonstrated for several TMdC monolayer films, including WS2 , WSe2 , MoS2 , the MoSe2 /WSe2 heterostructure, and W1- x Mox S2 alloys. This strategy provides a general avenue for the SC growth of diatomic van der Waals heterostructures on a wafer scale, to further facilitate the applications of TMdCs in post-silicon technology.

SELECTION OF CITATIONS
SEARCH DETAIL
...