Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(7)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37049827

ABSTRACT

Ionic liquids (ILs), as one of the most concerned functional materials in recent decades, have opened up active perspectives for electrocatalysis. In catalyst preparation, ILs act as characteristic active components besides media and templates. Compared with catalysts obtained using ordinary reagents, IL-derived catalysts have a special structure and catalytic performance due to the influence of IL's special physicochemical properties and structures. This review mainly describes the use of ILs as modifiers and reaction reagents to prepare electrocatalysts for water splitting. The designability of ILs provides opportunities for the ingenious composition of cations or anions. ILs containing heteroatoms (N, O, S, P, etc.) and transition metal anion (FeCl4-, NiCl3-, etc.) can be used to directly prepare metal phosphides, sulfides, carbides and nitrides, and so forth. The special physicochemical properties and supramolecular structures of ILs can provide growth conditions for catalysts that are different from the normal media environment, inducing special structure and high performance. ILs as heteroatom sources are safe, green and easy to operate compared with traditional heteroatom sources. The strategy for using ILs as reagents is expected to realize 100% atomic transformation of reactants, in line with the concept of green chemistry. This review reflects the discovered work with the best findings from the literature. It will offer readers a deeper understanding on the development of IL-derived electrocatalysts and inspire them to ingeniously design high-performance electrocatalysts for water splitting.

2.
Molecules ; 27(22)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36432198

ABSTRACT

As green, safe, and cheap solvents, deep eutectic solvents (DESs) provide tremendous opportunities to open up attractive perspectives for electrocatalysis. In this review, the achievement of DESs in the preparation of catalysts for electrolytic water splitting is described in detail according to their roles combined with our own work. DESs are generally employed as green media, templates, and electrolytes. A large number of hydrogen bonds in DESs result in supramolecular structures which have the ability to shape the morphologies of nanomaterials and then tune their performance. DESs can also serve as reactive reagents of metal electrocatalysts through directly participating in synthesis. Compared with conventional heteroatom sources, they have the advantages of high safety and designability. The "all-in-one" transformation strategy is expected to realize 100% atomic transformation of reactants. The aim of this review is to offer readers a deeper understanding on preparing DES-mediated electrocatalysts with higher performance for water splitting.

SELECTION OF CITATIONS
SEARCH DETAIL
...