Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Cell Discov ; 10(1): 53, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38763950

ABSTRACT

Peripheral CD8+ T cell number is tightly controlled but the precise molecular mechanism regulating this process is still not fully understood. In this study, we found that epilepsy patients with loss of function mutation of DEPDC5 had reduced peripheral CD8+ T cells, and DEPDC5 expression positively correlated with tumor-infiltrating CD8+ T cells as well as overall cancer patient survival, indicating that DEPDC5 may control peripheral CD8+ T cell homeostasis. Significantly, mice with T cell-specific Depdc5 deletion also had reduced peripheral CD8+ T cells and impaired anti-tumor immunity. Mechanistically, Depdc5-deficient CD8+ T cells produced high levels of xanthine oxidase and lipid ROS due to hyper-mTORC1-induced expression of ATF4, leading to spontaneous ferroptosis. Together, our study links DEPDC5-mediated mTORC1 signaling with CD8+ T cell protection from ferroptosis, thereby revealing a novel strategy for enhancing anti-tumor immunity via suppression of ferroptosis.

2.
Clin Exp Med ; 24(1): 92, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38693353

ABSTRACT

The role of RNA N6-methyladenosine (m6A) modification in immunity is being elucidated. This study aimed to explore the potential association between m6A regulators and the immune microenvironment in IgA nephropathy (IgAN). The expression profiles of 24 m6A regulators in 107 IgAN patients were obtained from the Gene Expression Omnibus (GEO) database. The least absolute shrinkage and selection operator (LASSO) regression and logistic regression analysis were utilized to construct a model for distinguishing IgAN from control samples. Based on the expression levels of m6A regulators, unsupervised clustering was used to identify m6A-induced molecular clusters in IgAN. Gene set enrichment analysis (GSEA) and immunocyte infiltration among different clusters were examined. The gene modules with the highest correlation for each of the three clusters were identified by weighted gene co-expression network analysis (WGCNA). A model containing 10 m6A regulators was developed using LASSO and logistic regression analyses. Three molecular clusters were determined using consensus clustering of 24 m6A regulators. A decrease in the expression level of YTHDF2 in IgAN samples was significantly negatively correlated with an increase in resting natural killer (NK) cell infiltration and was positively correlated with the abundance of M2 macrophage infiltration. The risk scores calculated by the nomogram were significantly higher for cluster-3, and the expression levels of m6A regulators in this cluster were generally low. Immunocyte infiltration and pathway enrichment results for cluster-3 differed significantly from those for the other two clusters. Finally, the expression of YTHDF2 was significantly decreased in IgAN based on immunohistochemical staining. This study demonstrated that m6A methylation regulators play a significant role in the regulation of the immune microenvironment in IgAN. Based on m6A regulator expression patterns, IgAN can be classified into multiple subtypes, which might provide additional insights into novel therapeutic methods for IgAN.


Subject(s)
Adenosine , Adenosine/analogs & derivatives , Glomerulonephritis, IGA , Glomerulonephritis, IGA/genetics , Glomerulonephritis, IGA/immunology , Glomerulonephritis, IGA/pathology , Humans , Adenosine/metabolism , Methylation , Gene Expression Profiling , Female , Gene Regulatory Networks , Male , Gene Expression Regulation , Adult , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , RNA-Binding Proteins/genetics , RNA Methylation
3.
Science ; 383(6679): eadf6493, 2024 01 12.
Article in English | MEDLINE | ID: mdl-38207030

ABSTRACT

Neutrophils are increasingly recognized as key players in the tumor immune response and are associated with poor clinical outcomes. Despite recent advances characterizing the diversity of neutrophil states in cancer, common trajectories and mechanisms governing the ontogeny and relationship between these neutrophil states remain undefined. Here, we demonstrate that immature and mature neutrophils that enter tumors undergo irreversible epigenetic, transcriptional, and proteomic modifications to converge into a distinct, terminally differentiated dcTRAIL-R1+ state. Reprogrammed dcTRAIL-R1+ neutrophils predominantly localize to a glycolytic and hypoxic niche at the tumor core and exert pro-angiogenic function that favors tumor growth. We found similar trajectories in neutrophils across multiple tumor types and in humans, suggesting that targeting this program may provide a means of enhancing certain cancer immunotherapies.


Subject(s)
Cellular Reprogramming , Neoplasms , Neovascularization, Pathologic , Neutrophils , Humans , Neoplasms/blood supply , Neoplasms/immunology , Neutrophils/immunology , Proteomics , Cellular Reprogramming/genetics , Cellular Reprogramming/immunology , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/immunology , Receptors, TNF-Related Apoptosis-Inducing Ligand/immunology , Epigenesis, Genetic , Hypoxia , Transcription, Genetic
4.
Cell Mol Immunol ; 20(9): 993-1001, 2023 09.
Article in English | MEDLINE | ID: mdl-37386174

ABSTRACT

Neutrophils, as the first defenders against external microbes and stimuli, are highly active and finely regulated innate immune cells. Emerging evidence has challenged the conventional dogma that neutrophils are a homogeneous population with a short lifespan that promotes tissue damage. Recent findings on neutrophil diversity and plasticity in homeostatic and disease states have centered on neutrophils in the circulation. In contrast, a comprehensive understanding of tissue-specialized neutrophils in health and disease is still lacking. This article will first discuss how multiomics advances have contributed to our understanding of neutrophil heterogeneity and diversification in resting and pathological settings. This discussion will be followed by a focus on the heterogeneity and role of neutrophils in solid organ transplantation and how neutrophils may contribute to transplant-related complications. The goal of this article is to provide an overview of the research on the involvement of neutrophils in transplantation, with the aim that this may draw attention to an underappreciated area of neutrophil research.


Subject(s)
Neutrophils , Organ Transplantation
5.
J Am Soc Nephrol ; 34(1): 73-87, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36719147

ABSTRACT

BACKGROUND: Hypoxia and hypoxia-inducible factors (HIFs) play essential and multiple roles in renal ischemia-reperfusion injury (IRI). Dendritic cells (DCs) comprise a major subpopulation of the immunocytes in the kidney and are key initiators and effectors of the innate immune responses after IRI. The role of HIF-2α in DCs remains unclear in the context of renal IRI. METHODS: To investigate the importance of HIF-2α in DCs upon renal IRI, we examined the effects of DC-specific HIF-2α ablation in a murine model. Bone marrow-derived DCs (BMDCs) from DC-specific HIF-2α-ablated mice and wild-type mice were used for functional studies and transcriptional profiling. RESULTS: DC-specific ablation of HIF-2α led to hyperactivation of natural killer T (NKT) cells, ultimately exacerbating murine renal IRI. HIF-2α deficiency in DCs triggered IFN-γ and IL-4 production in NKT cells, along with upregulation of type I IFN and chemokine responses that were critical for NKT cell activation. Mechanistically, loss of HIF-2α in DCs promoted their expression of CD36, a scavenger receptor for lipid uptake, increasing cellular lipid accumulation. Furthermore, HIF-2α bound directly to a reverse hypoxia-responsive element (rHRE) in the CD36 promoter. Importantly, CD36 blockade by sulfo-N-succinimidyl oleate (SSO) reduced NKT cell activation and abolished the exacerbation of renal IRI elicited by HIF-2α knockout. CONCLUSIONS: Our study reveals a previously unrecognized role of the HIF-2α/CD36 regulatory axis in rewiring DC lipid metabolism under IRI-associated hypoxia. These findings suggest a potential therapeutic target to resolve long-standing obstacles in treatment of this severe complication.


Subject(s)
Kidney , Reperfusion Injury , Animals , Mice , Basic Helix-Loop-Helix Transcription Factors/metabolism , Dendritic Cells/metabolism , Disease Models, Animal , Hypoxia/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Kidney/metabolism , Lipids/pharmacology , Reperfusion Injury/metabolism
7.
Immunity ; 55(7): 1268-1283.e9, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35700739

ABSTRACT

The incidence and mortality rates of many non-reproductive human cancers are generally higher in males than in females. However, the immunological mechanism underlying sexual differences in cancers remains elusive. Here, we demonstrated that sex-related differences in tumor burden depended on adaptive immunity. Male CD8+ T cells exhibited impaired effector and stem cell-like properties compared with female CD8+ T cells. Mechanistically, androgen receptor inhibited the activity and stemness of male tumor-infiltrating CD8+ T cells by regulating epigenetic and transcriptional differentiation programs. Castration combined with anti-PD-L1 treatment synergistically restricted tumor growth in male mice. In humans, fewer male CD8+ T cells maintained a stem cell-like memory state compared with female counterparts. Moreover, AR expression correlated with tumor-infiltrating CD8+ T cell exhaustion in cancer patients. Our findings reveal sex-biased CD8+ T cell stemness programs in cancer progression and in the responses to cancer immunotherapy, providing insights into the development of sex-based immunotherapeutic strategies for cancer treatment.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Animals , Female , Humans , Immunotherapy , Male , Mice , Neoplasms/therapy , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Sex Characteristics , Tumor Microenvironment
8.
Sci Adv ; 7(41): eabf6290, 2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34613770

ABSTRACT

Necroptosis, a form of regulated necrosis, participates in tumor development and dying cell immunogenicity. However, it remains unclear how tumor cell­intrinsic necroptotic signaling contributes to radiation-induced antitumor immunity. Here, we found that the ZBP1-MLKL necroptotic cascade in irradiated tumor cells was essential for antitumor immunity. ZBP1-dependent activation of MLKL potentiated type I interferon responses following tumor cell irradiation. Mechanistically, the ZBP1-MLKL necroptotic cascade induced cytoplasmic DNA accumulation in irradiated tumor cells and, in turn, autonomously activated cGAS-STING signaling, thus creating a positive feedback loop between those two pathways to drive persistent inflammation. Accordingly, ablation of caspase-8 enhanced STING pathway activation and the antitumor effects of radiation by activating MLKL. These findings reveal that ZBP1-MLKL necroptosis signaling maximized radiation-induced antitumor immunity through mutual interaction with the tumor cell­intrinsic STING pathway. This study provides insight into how radiotherapy bridges tumor cell damage to antitumor immune responses and an alternative strategy to improve radiotherapy.

9.
Sci Transl Med ; 12(549)2020 06 24.
Article in English | MEDLINE | ID: mdl-32581136

ABSTRACT

Although cGAS-STING-mediated DNA sensing in tumor cells or phagocytes is central for launching antitumor immunity, the role of intrinsic cGAS-STING activation in T cells remains unknown. Here, we observed that peripheral blood CD8+ T cells from patients with cancer showed remarkably compromised expression of the cGAS-STING cascade. We demonstrated that the cGAS-STING cascade in adoptively transferred CD8+ T cells was essential for antitumor immune responses in the context of T cell therapy in mice. Mechanistically, cell-autonomous cGAS and STING promoted the maintenance of stem cell-like CD8+ T cells, in part, by regulating the transcription factor TCF1 expression. Moreover, autocrine cGAS-STING-mediated type I interferon signaling augmented stem cell-like CD8+ T cell differentiation program mainly by restraining Akt activity. In addition, genomic DNA was selectively enriched in the cytosol of mouse CD8+ T cells upon in vitro and in vivo stimulation. STING agonism enhanced the formation of stem-like central memory CD8+ T cells from patients with cancer and potentiated antitumor responses of CAR-T cell therapy in a xenograft model. These findings advance our understanding of inherent cGAS-STING activation in T cells and provide insight into the development of improved T cell therapy by harnessing the cGAS-STING pathway for cancer immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes , Membrane Proteins , Animals , Cell- and Tissue-Based Therapy , DNA , Humans , Mice , Nucleotidyltransferases
10.
Cell Mol Immunol ; 16(9): 757-769, 2019 09.
Article in English | MEDLINE | ID: mdl-30705387

ABSTRACT

Proper control of B cell growth and metabolism is crucial for B-cell-mediated immunity, but the underlying molecular mechanisms remain incompletely understood. In this study, Sin1, a key component of mTOR complex 2 (mTORC2), specifically regulates B cell growth and metabolism. Genetic ablation of Sin1 in B cells reduces the cell size at either the transitional stage or upon antigen stimulation and severely impairs metabolism. Sin1 deficiency also severely impairs B-cell proliferation, antibody responses, and anti-viral immunity. At the molecular level, Sin1 controls the expression and stability of the c-Myc protein and maintains the activity of mTORC1 through the Akt-dependent inactivation of GSK3 and TSC1/2, respectively. Therefore, our study reveals a novel and specific role for Sin1 in coordinating the activation of mTORC2 and mTORC1 to control B cell growth and metabolism.


Subject(s)
B-Lymphocytes/cytology , B-Lymphocytes/metabolism , Carrier Proteins/physiology , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Animals , B-Lymphocytes/immunology , Cell Proliferation , Cells, Cultured , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 2/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphorylation , Proto-Oncogene Proteins c-myc/genetics , Signal Transduction
11.
Natl Sci Rev ; 6(6): 1149-1162, 2019 Nov.
Article in English | MEDLINE | ID: mdl-34691993

ABSTRACT

The mammalian target of rapamycin (mTOR) is an evolutionarily conserved Ser/Thr protein kinase with essential cellular function via processing various extracellular and intracellular inputs. Two distinct multi-protein mTOR complexes (mTORC), mTORC1 and mTORC2, have been identified and well characterized in eukaryotic cells from yeast to human. Sin1, which stands for Sty1/Spc1-interacting protein1, also known as mitogen-activated protein kinase (MAPK) associated protein (MAPKAP)1, is an evolutionarily conserved adaptor protein. Mammalian Sin1 interacts with many cellular proteins, but it has been widely studied as an essential component of mTORC2, and it is crucial not only for the assembly of mTORC2 but also for the regulation of its substrate specificity. In this review, we summarize our current knowledge of the structure and functions of Sin1, focusing specifically on its protein interaction network and its roles in the mTOR pathway that could account for various cellular functions of mTOR in growth, metabolism, immunity and cancer.

12.
Cell Adh Migr ; 12(1): 56-68, 2018 01 02.
Article in English | MEDLINE | ID: mdl-28636424

ABSTRACT

Hepatocellular carcinoma (HCC) is a subtype of malignant liver cancer with poor prognosis and limited treatment options. It is noteworthy that mechanical forces in tumor microenvironment play a pivotal role in mediating the behaviors and functions of tumor cells. As an instrumental type of mechanical forces in vivo, fluid shear stress (FSS) has been reported having potent physiologic and pathologic effects on cancer progression. However, the time-dependent mechanochemical transduction in HCC induced by FSS remains unclear. In this study, hepatocellular carcinoma HepG2 cells were exposed to 1.4 dyn/cm2 FSS for transient duration (15s and 30s), short duration (5 min, 15 min and 30 min) and long duration (1h, 2h and 4h), respectively. The expression and translocation of Integrins induced FAK-Rho GTPases signaling events were examined. Our results showed that FSS endowed HepG2 cells with higher migration ability via reorganizing cellular F-actin and disrupting intercellular tight junctions. We further demonstrated that FSS regulated the expression and translocation of Integrins and their downstream signaling cascade in time-dependent patterns. The FSS downregulated focal adhesion components (Paxillin, Vinculin and Talin) while upregulated the expression of Rho GTPases (Cdc42, Rac1 and RhoA) in long durations. These results indicated that FSS enhanced tumor cell migration through Integrins-FAK-Rho GTPases signaling pathway in time-dependent manners. Our in vitro findings shed new light on the role of FSS acting in physiologic and pathological processes during tumor progression, which has emerged as a promising clinical strategy for liver carcinoma.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Integrins/metabolism , Liver Neoplasms/metabolism , Stress, Mechanical , Cell Adhesion/physiology , Cell Movement/drug effects , Hep G2 Cells , Humans , Liver Neoplasms/drug therapy , Phosphorylation/drug effects , Time Factors , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...