Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Radiother Oncol ; 197: 110328, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38761884

ABSTRACT

BACKGROUND AND PURPOSE: Adjuvant treatments are valuable to decrease the recurrence rate and improve survival for early-stage cervical cancer patients (ESCC), Therefore, recurrence risk evaluation is critical for the choice of postoperative treatment. A magnetic resonance imaging (MRI) based radiomics nomogram integrating postoperative adjuvant treatments was constructed and validated externally to improve the recurrence risk prediction for ESCC. MATERIAL AND METHODS: 212 ESCC patients underwent surgery and adjuvant treatments from three centers were enrolled and divided into the training, internal validation, and external validation cohorts. Their clinical data, pretreatment T2-weighted images (T2WI) were retrieved and analyzed. Radiomics models were constructed using machine learning methods with features extracted and screen from sagittal and axial T2WI. A nomogram for recurrence prediction was build and evaluated using multivariable logistic regression analysis integrating radiomic signature and adjuvant treatments. RESULTS: A total of 8 radiomic features were screened out of 1020 extracted features. The extreme gradient boosting (XGboost) model based on MRI radiomic features performed best in recurrence prediction with an area under curve (AUC) of 0.833, 0.822 in the internal and external validation cohorts, respectively. The nomogram integrating radiomic signature and clinical factors achieved an AUC of 0.806, 0.718 in the internal and external validation cohorts, respectively, for recurrence risk prediction for ESCC. CONCLUSION: In this study, the nomogram integrating T2WI radiomic signature and clinical factors is valuable to predict the recurrence risk, thereby allowing timely planning for effective treatments for ESCC with high risk of recurrence.

2.
Insights Imaging ; 14(1): 174, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37840068

ABSTRACT

BACKGROUND: Preoperative stratification is critical for the management of patients with esophageal cancer (EC). To investigate the feasibility and accuracy of PET-CT-based radiomics in preoperative prediction of clinical and pathological stages for patients with EC. METHODS: Histologically confirmed 100 EC patients with preoperative PET-CT images were enrolled retrospectively and randomly divided into training and validation cohorts at a ratio of 7:3. The maximum relevance minimum redundancy (mRMR) was applied to select optimal radiomics features from PET, CT, and fused PET-CT images, respectively. Logistic regression (LR) was applied to classify the T stage (T1,2 vs. T3,4), lymph node metastasis (LNM) (LNM(-) vs. LNM(+)), and pathological state (pstage) (I-II vs. III-IV) with features from CT (CT_LR_Score), PET (PET_LR_Score), fused PET/CT (Fused_LR_Score), and combined CT and PET features (CT + PET_LR_Score), respectively. RESULTS: Seven, 10, and 7 CT features; 7, 8, and 7 PET features; and 3, 6, and 3 fused PET/CT features were selected using mRMR for the prediction of T stage, LNM, and pstage, respectively. The area under curves (AUCs) for T stage, LNM, and pstage prediction in the validation cohorts were 0.846, 0.756, 0.665, and 0.815; 0.769, 0.760, 0.665, and 0.824; and 0.727, 0.785, 0.689, and 0.837 for models of CT_LR_Score, PET_ LR_Score, Fused_ LR_Score, and CT + PET_ LR_Score, respectively. CONCLUSIONS: Accurate prediction ability was observed with combined PET and CT radiomics in the prediction of T stage, LNM, and pstage for EC patients. CRITICAL RELEVANCE STATEMENT: PET/CT radiomics is feasible and promising to stratify stages for esophageal cancer preoperatively. KEY POINTS: • PET-CT radiomics achieved the best performance for Node and pathological stage prediction. • CT radiomics achieved the best AUC for T stage prediction. • PET-CT radiomics is feasible and promising to stratify stages for EC preoperatively.

3.
Insights Imaging ; 14(1): 65, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-37060378

ABSTRACT

BACKGROUND: Noninvasive and accurate prediction of lymph node metastasis (LNM) is very important for patients with early-stage cervical cancer (ECC). Our study aimed to investigate the accuracy and sensitivity of radiomics models with features extracted from both intra- and peritumoral regions in magnetic resonance imaging (MRI) with T2 weighted imaging (T2WI) and diffusion weighted imaging (DWI) for predicting LNM. METHODS: A total of 247 ECC patients with confirmed lymph node status were enrolled retrospectively and randomly divided into training (n = 172) and testing sets (n = 75). Radiomics features were extracted from both intra- and peritumoral regions with different expansion dimensions (3, 5, and 7 mm) in T2WI and DWI. Radiomics signature and combined radiomics models were constructed with selected features. A nomogram was also constructed by combining radiomics model with clinical factors for predicting LNM. RESULTS: The area under curves (AUCs) of radiomics signature with features from tumors in T2WI and DWI were 0.841 vs. 0.791 and 0.820 vs. 0.771 in the training and testing sets, respectively. Combining radiomics features from tumors in the T2WI, DWI and peritumoral 3 mm expansion in T2WI achieved the best performance with an AUC of 0.868 and 0.846 in the training and testing sets, respectively. A nomogram combining age and maximum tumor diameter (MTD) with radiomics signature achieved a C-index of 0.884 in the prediction of LNM for ECC. CONCLUSIONS:  Radiomics features extracted from both intra- and peritumoral regions in T2WI and DWI are feasible and promising for the preoperative prediction of LNM for patients with ECC.

4.
Technol Cancer Res Treat ; 22: 15330338231167039, 2023.
Article in English | MEDLINE | ID: mdl-36999201

ABSTRACT

PURPOSE: To predict the voxel-based dose distribution for postoperative cervical cancer patients underwent volumetric modulated arc therapy using deep learning models. METHOD: A total of 254 patients with cervical cancer received volumetric modulated arc therapy in authors' hospital from January 2018 to September 2021 were enrolled in this retrospective study. Two deep learning networks (3D deep residual neural network and 3DUnet) were adapted to train (203 cases) and test (51 cases) the feasibility and effectiveness of the prediction method. The performance of deep learning models was evaluated by comparing the results with those of treatment planning system according to metrics of dose-volume histogram of target volumes and organs at risk. RESULTS: The dose distributions predicted by deep learning models were clinically acceptable. The automatic dose prediction time was around 5 to 10 min, which was about one-eighth to one-tenth of the manual optimization time. The maximum dose difference was observed in D98 of rectum with a | δD| of 5.00 ± 3.40% and 4.88 ± 3.99% for Unet3D and ResUnet3D, respectively. The minimum difference was observed in the D2 of clinical target volume with a |δD| of 0.53 ± 0.45% and 0.83 ± 0.45% for ResUnet3D and Unet3D, respectively. CONCLUSION: The 2 deep learning models adapted in the study showed the feasibility and reasonable accuracy in the voxel-based dose prediction for postoperative cervical cancer underwent volumetric modulated arc therapy. Automatic dose distribution prediction of volumetric modulated arc therapy with deep learning models is of clinical significance for the postoperative management of patients with cervical cancer.


Subject(s)
Deep Learning , Radiotherapy, Intensity-Modulated , Uterine Cervical Neoplasms , Female , Humans , Radiotherapy, Intensity-Modulated/methods , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Uterine Cervical Neoplasms/diagnostic imaging , Uterine Cervical Neoplasms/radiotherapy , Uterine Cervical Neoplasms/surgery , Retrospective Studies , Organs at Risk
5.
PeerJ ; 11: e14546, 2023.
Article in English | MEDLINE | ID: mdl-36650830

ABSTRACT

Background: Preoperative prediction of cervical lymph node metastasis in papillary thyroid carcinoma provided a basis for tumor staging and treatment decision. This study aimed to investigate the utility of machine learning and develop different models to preoperatively predict cervical lymph node metastasis based on ultrasonic radiomic features and clinical characteristics in papillary thyroid carcinoma nodules. Methods: Data from 400 papillary thyroid carcinoma nodules were included and divided into training and validation group. With the help of machine learning, clinical characteristics and ultrasonic radiomic features were extracted and selected using randomforest and least absolute shrinkage and selection operator regression before classified by five classifiers. Finally, 10 models were built and their area under the receiver operating characteristic curve, accuracy, sensitivity, specificity, positive predictive value and negative predictive value were measured. Results: Among the 10 models, RF-RF model revealed the highest area under curve (0.812) and accuracy (0.7542) in validation group. The top 10 variables of it included age, seven textural features, one shape feature and one first-order feature, in which eight were high-dimensional features. Conclusions: RF-RF model showed the best predictive performance for cervical lymph node metastasis. And the importance features selected by it highlighted the unique role of higher-dimensional statistical methods for radiomics analysis.


Subject(s)
Thyroid Neoplasms , Ultrasonics , Humans , Retrospective Studies , Thyroid Cancer, Papillary/diagnostic imaging , Lymphatic Metastasis/diagnostic imaging , Thyroid Neoplasms/diagnostic imaging
6.
Technol Cancer Res Treat ; 21: 15330338221118412, 2022.
Article in English | MEDLINE | ID: mdl-35971568

ABSTRACT

Objective To investigate the effects of different ultrasonic machines on the performance of radiomics models using ultrasound (US) images in the prediction of lymph node metastasis (LNM) for patients with cervical cancer (CC) preoperatively. Methods A total of 536 CC patients with confirmed histological characteristics and lymph node status after radical hysterectomy and pelvic lymphadenectomy were enrolled. Radiomics features were extracted and selected with US images acquired with ATL HDI5000, Voluson E8, MyLab classC, ACUSON S2000, and HI VISION Preirus to build radiomics models for LNM prediction using support vector machine (SVM) and logistic regression, respectively. Results There were 148 patients (training vs validation: 102:46) scanned in machine HDI5000, 75 patients (53:22) in machine Voluson E8, 100 patients (69:31) in machine MyLab classC, 110 patients (76:34) in machine ACUSON S2000, and 103 patients (73:30) in machine HI VISION Preirus, respectively. Few radiomics features were reproducible among different machines. The area under the curves (AUCs) ranged from 0.75 to 0.86, 0.73 to 0.86 in the training cohorts, and from 0.71 to 0.82, 0.70 to 0.80 in the validation cohorts for SVM and logistic regression models, respectively. The highest difference in AUCs for different machines reaches 17.8% and 15.5% in the training and validation cohorts, respectively. Conclusions The performance of radiomics model is dependent on the type of scanner. The problem of scanner dependency on radiomics features should be considered, and their effects should be minimized in future studies for US images.


Subject(s)
Uterine Cervical Neoplasms , Female , Humans , Lymph Node Excision , Lymph Nodes/diagnostic imaging , Lymph Nodes/pathology , Lymphatic Metastasis/pathology , Retrospective Studies , Ultrasonics , Uterine Cervical Neoplasms/diagnostic imaging , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/surgery
7.
Technol Cancer Res Treat ; 21: 15330338221099396, 2022.
Article in English | MEDLINE | ID: mdl-35522305

ABSTRACT

Introduction: The purpose of this study is to investigate the effects of automatic segmentation algorithms on the performance of ultrasound (US) radiomics models in predicting the status of lymph node metastasis (LNM) for patients with early stage cervical cancer preoperatively. Methods: US images of 148 cervical cancer patients were collected and manually contoured by two senior radiologists. The four deep learning-based automatic segmentation models, namely U-net, context encoder network (CE-net), Resnet, and attention U-net were constructed to segment the tumor volumes automatically. Radiomics features were extracted and selected from manual and automatically segmented regions of interest (ROIs) to predict the LNM of these cervical cancer patients preoperatively. The reliability and reproducibility of radiomics features and the performances of prediction models were evaluated. Results: A total of 449 radiomics features were extracted from manual and automatic segmented ROIs with Pyradiomics. Features with an intraclass coefficient (ICC) > 0.9 were all 257 (57.2%) from manual and automatic segmented contours. The area under the curve (AUCs) of validation models with radiomics features extracted from manual, attention U-net, CE-net, Resnet, and U-net were 0.692, 0.755, 0.696, 0.689, and 0.710, respectively. Attention U-net showed best performance in the LNM prediction model with a lowest discrepancy between training and validation. The AUCs of models with automatic segmentation features from attention U-net, CE-net, Resnet, and U-net were 9.11%, 0.58%, -0.44%, and 2.61% higher than AUC of model with manual contoured features, respectively. Conclusion: The reliability and reproducibility of radiomics features, as well as the performance of radiomics models, were affected by manual segmentation and automatic segmentations.


Subject(s)
Uterine Cervical Neoplasms , Female , Humans , Lymph Nodes/diagnostic imaging , Lymph Nodes/pathology , Lymphatic Metastasis/pathology , Reproducibility of Results , Retrospective Studies , Uterine Cervical Neoplasms/diagnostic imaging , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/surgery
8.
J Appl Clin Med Phys ; 23(7): e13631, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35533205

ABSTRACT

PURPOSE: An accurate and reliable target volume delineation is critical for the safe and successful radiotherapy. The purpose of this study is to develop new 2D and 3D automatic segmentation models based on RefineNet for clinical target volume (CTV) and organs at risk (OARs) for postoperative cervical cancer based on computed tomography (CT) images. METHODS: A 2D RefineNet and 3D RefineNetPlus3D were adapted and built to automatically segment CTVs and OARs on a total of 44 222 CT slices of 313 patients with stage I-III cervical cancer. Fully convolutional networks (FCNs), U-Net, context encoder network (CE-Net), UNet3D, and ResUNet3D were also trained and tested with randomly divided training and validation sets, respectively. The performances of these automatic segmentation models were evaluated by Dice similarity coefficient (DSC), Jaccard similarity coefficient, and average symmetric surface distance when comparing them with manual segmentations with the test data. RESULTS: The DSC for RefineNet, FCN, U-Net, CE-Net, UNet3D, ResUNet3D, and RefineNet3D were 0.82, 0.80, 0.82, 0.81, 0.80, 0.81, and 0.82 with a mean contouring time of 3.2, 3.4, 8.2, 3.9, 9.8, 11.4, and 6.4 s, respectively. The generated RefineNetPlus3D demonstrated a good performance in the automatic segmentation of bladder, small intestine, rectum, right and left femoral heads with a DSC of 0.97, 0.95, 091, 0.98, and 0.98, respectively, with a mean computation time of 6.6 s. CONCLUSIONS: The newly adapted RefineNet and developed RefineNetPlus3D were promising automatic segmentation models with accurate and clinically acceptable CTV and OARs for cervical cancer patients in postoperative radiotherapy.


Subject(s)
Organs at Risk , Uterine Cervical Neoplasms , Female , Humans , Image Processing, Computer-Assisted/methods , Neural Networks, Computer , Radiotherapy Planning, Computer-Assisted/methods , Uterine Cervical Neoplasms/diagnostic imaging , Uterine Cervical Neoplasms/radiotherapy , Uterine Cervical Neoplasms/surgery
9.
J Digit Imaging ; 35(5): 1362-1372, 2022 10.
Article in English | MEDLINE | ID: mdl-35474555

ABSTRACT

Noninvasive differentiating thyroid follicular adenoma from carcinoma preoperatively is of great clinical value to decrease the risks resulted from excessive surgery for patients with follicular neoplasm. The purpose of this study is to investigate the accuracy of ultrasound radiomics features integrating with ultrasound features in the differentiation between thyroid follicular carcinoma and adenoma. A total of 129 patients diagnosed as thyroid follicular neoplasm with pathologically confirmed follicular adenoma and carcinoma were enrolled and analyzed retrospectively. Radiomics features were extracted from preoperative ultrasound images with manually contoured targets. Ultrasound features and clinical parameters were also obtained from electronic medical records. Radiomics signature, combined model integrating radiomics features, ultrasound features, and clinical parameters were constructed and validated to differentiate the follicular carcinoma from adenoma. A total of 23 optimal features were selected from 449 extracted radiomics features. Clinical and ultrasound parameters of sex (p = 0.003), interior structure (p = 0.035), edge (p = 0.02), platelets (p = 0.007), and creatinine (p = 0.001) were associated with the differentiation between benign and malignant follicular neoplasm. The values of area under curves (AUCs) of the radiomics signature, clinical model, and combined model were 0.772 (95% CI: 0.707-0.838), 0.792 (95% CI: 0.715-0.869), and 0.861 (95% CI: 0.775-0.909), respectively. A final corrected AUC of 0.844 was achieved for the combined model after internal validation. Radiomics features from ultrasound images combined with ultrasound features and clinical factors are feasible to differentiate thyroid follicular carcinoma from adenoma noninvasive before operation to decrease the unnecessary of diagnostic thyroidectomy for patients with benign follicular adenoma.


Subject(s)
Adenocarcinoma, Follicular , Adenoma , Carcinoma , Thyroid Neoplasms , Humans , Adenocarcinoma, Follicular/diagnostic imaging , Adenocarcinoma, Follicular/surgery , Adenoma/diagnostic imaging , Adenoma/surgery , Creatinine , Retrospective Studies , Thyroid Neoplasms/diagnostic imaging , Thyroid Neoplasms/surgery , Ultrasonography
10.
J Digit Imaging ; 35(4): 983-992, 2022 08.
Article in English | MEDLINE | ID: mdl-35355160

ABSTRACT

Ultrasound (US) imaging has been recognized and widely used as a screening and diagnostic imaging modality for cervical cancer all over the world. However, few studies have investigated the U-net-based automatic segmentation models for cervical cancer on US images and investigated the effects of automatic segmentations on radiomics features. A total of 1102 transvaginal US images from 796 cervical cancer patients were collected and randomly divided into training (800), validation (100) and test sets (202), respectively, in this study. Four U-net models (U-net, U-net with ResNet, context encoder network (CE-net), and Attention U-net) were adapted to segment the target of cervical cancer automatically on these US images. Radiomics features were extracted and evaluated from both manually and automatically segmented area. The mean Dice similarity coefficient (DSC) of U-net, Attention U-net, CE-net, and U-net with ResNet were 0.88, 0.89, 0.88, and 0.90, respectively. The average Pearson coefficients for the evaluation of the reliability of US image-based radiomics were 0.94, 0.96, 0.94, and 0.95 for U-net, U-net with ResNet, Attention U-net, and CE-net, respectively, in their comparison with manual segmentation. The reproducibility of the radiomics parameters evaluated by intraclass correlation coefficients (ICC) showed robustness of automatic segmentation with an average ICC coefficient of 0.99. In conclusion, high accuracy of U-net-based automatic segmentations was achieved in delineating the target area of cervical cancer US images. It is feasible and reliable for further radiomics studies with features extracted from automatic segmented target areas.


Subject(s)
Image Processing, Computer-Assisted , Uterine Cervical Neoplasms , Female , Humans , Image Processing, Computer-Assisted/methods , Reproducibility of Results , Ultrasonography , Uterine Cervical Neoplasms/diagnostic imaging
11.
Front Oncol ; 11: 610742, 2021.
Article in English | MEDLINE | ID: mdl-34178617

ABSTRACT

BACKGROUND: There is urgent need for an accurate preoperative prediction of metastatic status to optimize treatment for patients with ovarian cancer (OC). The feasibility of predicting the metastatic status based on radiomics features from preoperative computed tomography (CT) images alone or combined with clinical factors were investigated. METHODS: A total of 101 OC patients who underwent primary debulking surgery were enrolled. Radiomics features were extracted from the tumor volumes contoured on CT images with LIFEx package. Mann-Whitney U tests, least absolute shrinkage selection operator (LASSO), and Ridge Regression were applied to select features and to build prediction models. Univariate and regression analysis were applied to select clinical factors for metastatic prediction. The performance of models generated with radiomics features alone, clinical factors, and combined factors were evaluated and compared. RESULTS: Nine radiomics features were screened out from 184 extracted features to classify patients with and without metastasis. Age and cancer antigen 125 (CA125) were the two clinical factors that were associated with metastasis. The area under curves (AUCs) for the radiomics signature, clinical factors model, and combined model were 0.82 (95% CI, 0.66-0.98; sensitivity = 0.90, specificity = 0.70), 0.83 (95% CI, 0.67-0.95; sensitivity = 0.71, specificity = 0.8), and 0.86 (95% CI, 0.72-0.99, sensitivity = 0.81, specificity = 0.8), respectively. CONCLUSIONS: Radiomics features alone or radiomics features combined with clinical factors are feasible and accurate enough to predict the metastatic status for OC patients.

12.
Front Oncol ; 11: 642892, 2021.
Article in English | MEDLINE | ID: mdl-33842352

ABSTRACT

OBJECTIVES: Non-invasive method to predict the histological subtypes preoperatively is essential for the overall management of ovarian cancer (OC). The feasibility of radiomics in the differentiating of epithelial ovarian cancer (EOC) and non-epithelial ovarian cancer (NEOC) based on computed tomography (CT) images was investigated. METHODS: Radiomics features were extracted from preoperative CT for 101 patients with pathologically proven OC. Radiomics signature was built using the least absolute shrinkage and selection operator (LASSO) logistic regression. A nomogram was developed with the combination of radiomics features and clinical factors to differentiate EOC and NEOC. RESULTS: Eight radiomics features were selected to build a radiomics signature with an area under curve (AUC) of 0.781 (95% confidence interval (CI), 0.666 -0.897) in the discrimination between EOC and NEOC. The AUC of the combined model integrating clinical factors and radiomics features was 0.869 (95% CI, 0.783 -0.955). The nomogram demonstrated that the combined model provides a better net benefit to predict histological subtypes compared with radiomics signature and clinical factors alone when the threshold probability is within a range from 0.43 to 0.97. CONCLUSIONS: Nomogram developed with CT radiomics signature and clinical factors is feasible to predict the histological subtypes preoperative for patients with OC.

13.
Eur Radiol ; 31(2): 1022-1028, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32822055

ABSTRACT

OBJECTIVES: It is of high clinical importance to identify the primary lesion and its pathological types for patients with brain metastases (BM). The purpose of this study is to investigate the feasibility and accuracy of differentiating the primary adenocarcinoma (AD) and squamous cell carcinoma (SCC) of non-small-cell lung cancer (NSCLC) for patients with BM based on radiomics from brain contrast-enhanced computer tomography (CECT) images. METHODS: A total of 144 BM patients (94 male, 50 female) were enrolled in this study with 102 with primary lung AD and 42 with SCC, respectively. Radiomics features from manually contoured tumors were extracted using python. Mann-Whitney U test and the least absolute shrinkage and selection operator (LASSO) logistic regression were applied to select relative radiomics features. Binary logistic regression and support vector machines (SVM) were applied to build models with radiomics features alone and with radiomics features plus age and sex. RESULTS: Fourteen features were selected from a total of 105 radiomics features for the final model building. The area under the curves (AUCs) and accuracy of SVM and binary logistic regression models were 0.765 vs. 0.769, 0.795 vs.0.828, and 0.716 vs. 0.726, 0.768 vs. 0.758, respectively, for models with radiomics features alone and models with radiomics features plus sex and age. CONCLUSIONS: Brain CECT radiomics are promising in differentiating primary AD and SCC to achieve optimal therapeutic management in patients with BM from NSCLC. KEY POINTS: • It is of high clinical importance to identify the primary lesion and its pathological types for patients with brain metastases (BM) to define the prognosis and treatment. • Few studies had investigated the feasibility and accuracy of differentiating the pathological subtypes of primary non-small-cell lung cancer between adenocarcinoma (AD) and squamous cell carcinoma (SCC) for patients with BM based on radiomics from brain contrast-enhanced CT (CECT) images, although CECT images are often the initial imaging modality to screen for metastases and are recommended on equal footing with MRI for the detection of cerebral metastases. • Brain CECT radiomics are promising in differentiating primary AD and SCC to achieve optimal therapeutic management in patients with BM from NSCLC with a highest area under the curve (AUC) of 0.828 and an accuracy of 0.758, respectively.


Subject(s)
Brain Neoplasms , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Brain , Brain Neoplasms/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Female , Humans , Lung Neoplasms/diagnostic imaging , Male , Retrospective Studies , Tomography, X-Ray Computed
14.
Eur Radiol ; 30(7): 4117-4124, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32078013

ABSTRACT

OBJECTIVE: To investigate the feasibility of a noninvasive detection of lymph node metastasis (LNM) for early-stage cervical cancer (ECC) patients with radiomics methods based on the textural features from ultrasound images. METHODS: One hundred seventy-two ECC patients between January 2014 and September 2018 with pathologically confirmed lymph node status (LNS) and preoperative ultrasound images were retrospectively reviewed. Regions of interest (ROIs) were delineated by a senior radiologist in the ultrasound images. LIFEx was applied to extract textural features for radiomics study. Least absolute shrinkage and selection operator (LASSO) regression was applied for dimension reduction and for selection of key features. A multivariable logistic regression analysis was adopted to build the radiomics signature. The Mann-Whitney U test was applied to investigate the correlation between radiomics and LNS for both training and validation cohorts. Receiver operating characteristic (ROC) curves were applied to evaluate the accuracy of the radiomics prediction models. RESULTS: A total of 152 radiomics features were extracted from ultrasound images, in which 6 features were significantly associated with LNS (p < 0.05). The radiomics signatures demonstrated a good discrimination between patients with LNM and non-LNM groups. The best radiomics performance model achieved an area under the curve (AUC) of 0.79 (95% confidence interval (CI), 0.71-0.88) in the training cohort and 0.77 (95% CI, 0.65-0.88) in the validation cohort. CONCLUSIONS: The feasibility of radiomics features from ultrasound images for the prediction of LNM in ECC was investigated. This noninvasive prediction method may be used to facilitate preoperative identification of LNS in patients with ECC. KEY POINTS: • Few studied had investigated the feasibility of radiomics based on ultrasound images for cervical cancer, even though it is the most common practice for gynecological cancer diagnosis and treatment. • The radiomics signatures based on ultrasound images demonstrated a good discrimination between patients with and without lymph node metastasis with an area under the curve (AUC) of 0.79 and 0.77 in the training and validation cohorts, respectively. • The radiomics model based on preoperative ultrasound images has the potential ability to predict lymph node status noninvasively in patients with early-state cervical cancer, so as to reduce the impact of invasive examination and to optimize the treatment choices.


Subject(s)
Image Processing, Computer-Assisted/methods , Lymph Nodes/diagnostic imaging , Lymph Nodes/pathology , Lymphatic Metastasis/diagnostic imaging , Uterine Cervical Neoplasms/diagnostic imaging , Uterine Cervical Neoplasms/pathology , Adult , Aged , Area Under Curve , Feasibility Studies , Female , Humans , Male , Middle Aged , ROC Curve , Retrospective Studies , Ultrasonography
15.
Front Oncol ; 10: 614201, 2020.
Article in English | MEDLINE | ID: mdl-33680934

ABSTRACT

Few studies have reported the reproducibility and stability of ultrasound (US) images based radiomics features obtained from automatic segmentation in oncology. The purpose of this study is to study the accuracy of automatic segmentation algorithms based on multiple U-net models and their effects on radiomics features from US images for patients with ovarian cancer. A total of 469 US images from 127 patients were collected and randomly divided into three groups: training sets (353 images), validation sets (23 images), and test sets (93 images) for automatic segmentation models building. Manual segmentation of target volumes was delineated as ground truth. Automatic segmentations were conducted with U-net, U-net++, U-net with Resnet as the backbone (U-net with Resnet), and CE-Net. A python 3.7.0 and package Pyradiomics 2.2.0 were used to extract radiomic features from the segmented target volumes. The accuracy of automatic segmentations was evaluated by Jaccard similarity coefficient (JSC), dice similarity coefficient (DSC), and average surface distance (ASD). The reliability of radiomics features were evaluated by Pearson correlation and intraclass correlation coefficients (ICC). CE-Net and U-net with Resnet outperformed U-net and U-net++ in accuracy performance by achieving a DSC, JSC, and ASD of 0.87, 0.79, 8.54, and 0.86, 0.78, 10.00, respectively. A total of 97 features were extracted from the delineated target volumes. The average Pearson correlation was 0.86 (95% CI, 0.83-0.89), 0.87 (95% CI, 0.84-0.90), 0.88 (95% CI, 0.86-0.91), and 0.90 (95% CI, 0.88-0.92) for U-net++, U-net, U-net with Resnet, and CE-Net, respectively. The average ICC was 0.84 (95% CI, 0.81-0.87), 0.85 (95% CI, 0.82-0.88), 0.88 (95% CI, 0.85-0.90), and 0.89 (95% CI, 0.86-0.91) for U-net++, U-net, U-net with Resnet, and CE-Net, respectively. CE-Net based segmentation achieved the best radiomics reliability. In conclusion, U-net based automatic segmentation was accurate enough to delineate the target volumes on US images for patients with ovarian cancer. Radiomics features extracted from automatic segmented targets showed good reproducibility and for reliability further radiomics investigations.

16.
Front Oncol ; 10: 610691, 2020.
Article in English | MEDLINE | ID: mdl-33643912

ABSTRACT

Prognostic parameters and models were believed to be helpful in improving the treatment outcome for patients with brain metastasis (BM). The purpose of this study was to investigate the feasibility of computer tomography (CT) radiomics based nomogram to predict the survival of patients with BM from non-small cell lung cancer (NSCLC) treated with whole brain radiotherapy (WBRT). A total of 195 patients with BM from NSCLC who underwent WBRT from January 2012 to December 2016 were retrospectively reviewed. Radiomics features were extracted and selected from pretherapeutic CT images with least absolute shrinkage and selection operator (LASSO) regression. A nomogram was developed and evaluated by integrating radiomics features and clinical factors to predict the survival of individual patient. Five radiomics features were screened out from 105 radiomics features according to the LASSO Cox regression. According to the optimal cutoff value of radiomics score (Rad-score), patients were stratified into low-risk (Rad-score <= -0.14) and high-risk (Rad-score > -0.14) groups. Multivariable analysis indicated that sex, karnofsky performance score (KPS) and Rad-score were independent predictors for overall survival (OS). The concordance index (C-index) of the nomogram in the training cohort and validation cohort was 0.726 and 0.660, respectively. An area under curve (AUC) of 0.786 and 0.788 was achieved for the short-term and long-term survival prediction, respectively. In conclusion, the nomogram based on radiomics features from CT images and clinical factors was feasible to predict the OS of BM patients from NSCLC who underwent WBRT.

17.
Cancer Manag Res ; 11: 6091-6098, 2019.
Article in English | MEDLINE | ID: mdl-31308747

ABSTRACT

BACKGROUND: Controversial conclusions had been reported in studies trying to confirm the impact of heart dose on overall survival (OS) reported in RTOG 0167 for non-small cell lung cancer (NSCLC) patients who underwent radiotherapy (RT). The purpose of this study is to investigate the association of lung and heart dosimetric parameters with OS in NSCLC patients treated by volumetric modulated arc therapy (VMAT). METHODS: Inoperable NSCLC patients treated by VMAT from March 2012 to December 2015 were retrospectively reviewed. OS and progression-free survival (PFS) were estimated with the Kaplan-Meier method. Univariate and multivariate analyses were conducted with Cox proportional hazards model. Multivariate model building was conducted using stepwise regression for variables with p-value smaller than 0.2 in the univariate analysis. RESULTS: There were 130 NSCLC patients enrolled in this study with a median age of 63 years (range from 34 to 82 y). The median prescription dose for these patients was 56 Gy (range 40-70 Gy) with a mean heart and lung dose of 14.8±8.5 Gy and 13.6±4.4 Gy, respectively. The rates of patients with above grade III radiation pneumonitis (RP) and fibrosis were 8.5% and 8.5%, respectively. The 2-year PFS and OS of these patients were 15.2% and 39.8%, with a median PFS and OS of 7.2 and 18.8 months, respectively. RP was correlated with OS (p=0.048) and lung V20 was associated with PFS (p=0.04) according to the univariate analysis. Multivariate analysis demonstrated that RP (HR 1.39, 95%CI 1.010-1.909, p=0.043) and heart V15 (HR 1.02, 95%CI 1.006-1.025 p=0.002) were progression factors of OS, and no factor was associated with PFS. CONCLUSIONS: RP and heart V15 were associated with OS for patients with stage III NSCLC who underwent VMAT. Heart and lung dosimetric parameters were highly correlated with each other, sparing of heart and lung should be considered equally during the treatment planning.

18.
Eur Radiol ; 29(11): 6080-6088, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31028447

ABSTRACT

PURPOSE: To investigate the treatment response prediction feasibility and accuracy of an integrated model combining computed tomography (CT) radiomic features and dosimetric parameters for patients with esophageal cancer (EC) who underwent concurrent chemoradiation (CRT) using machine learning. METHODS: The radiomic features and dosimetric parameters of 94 EC patients were extracted and modeled using Support Vector Classification (SVM) and Extreme Gradient Boosting algorithm (XGBoost). The 94-sample dataset was randomly divided into a 70-sample training subset and a 24-sample independent test set while keeping the class proportions intact via stratification. A receiver operating characteristic (ROC) curve was used to assess the performance of models using radiomic features alone and using combined radiomic features and dosimetric parameters. RESULTS: A total of 42 radiomic features and 18 dosimetric parameters plus the patients' characteristic parameters were extracted for these 94 cases (58 responders and 36 non-responders). XGBoost plus principal component analysis (PCA) achieved an accuracy and area under the curve of 0.708 and 0.541, respectively, for models with radiomic features combined with dosimetric parameters, and 0.689 and 0.479, respectively, for radiomic features alone. Image features of GlobalMean X.333.1, Coarseness, Skewness, and GlobalStd contributed most to the model. The dosimetric parameters of gross tumor volume (GTV) homogeneity index (HI), Cord Dmax, Prescription dose, Heart-Dmean, and Heart-V50 also had a strong contribution to the model. CONCLUSIONS: The model with radiomic features combined with dosimetric parameters is promising and outperforms that with radiomic features alone in predicting the treatment response of patients with EC who underwent CRT. KEY POINTS: • The model with radiomic features combined with dosimetric parameters is promising in predicting the treatment response of patients with EC who underwent CRT. • The model with radiomic features combined with dosimetric parameters (prediction accuracy of 0.708 and AUC of 0.689) outperforms that with radiomic features alone (best prediction accuracy of 0.625 and AUC of 0.412). • The image features of GlobalMean X.333.1, Coarseness, Skewness, and GlobalStd contributed most to the treatment response prediction model. The dosimetric parameters of GTV HI, Cord Dmax, Prescription dose, Heart-Dmean, and Heart-V50 also had a strong contribution to the model.


Subject(s)
Carcinoma, Squamous Cell/therapy , Esophageal Neoplasms/therapy , Machine Learning , Radiometry/methods , Tomography, X-Ray Computed/methods , Aged , Aged, 80 and over , Carcinoma, Squamous Cell/diagnosis , Chemoradiotherapy , Esophageal Neoplasms/diagnosis , Female , Humans , Male , Middle Aged , ROC Curve
SELECTION OF CITATIONS
SEARCH DETAIL
...