Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 475
Filter
1.
Bioact Mater ; 39: 392-405, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38855060

ABSTRACT

Retinal neovascularization (RNV), a typical pathological manifestation involved in most neovascular diseases, causes retinal detachment, vision loss, and ultimately irreversible blindness. Repeated intravitreal injections of anti-VEGF drugs were developed against RNV, with limitations of incomplete responses and adverse effects. Therefore, a new treatment with a better curative effect and more prolonged dosage is demanding. Here, we induced macrophage polarization to anti-inflammatory M2 phenotype by inhibiting cGAS-STING signaling with an antagonist C176, appreciating the role of cGAS-STING signaling in the retina in pro-inflammatory M1 polarization. C176-loaded and phosphatidylserine-modified dendritic mesoporous silica nanoparticles were constructed and examined by a single intravitreal injection. The biosafe nanoparticles were phagocytosed by retinal macrophages through a phosphatidylserine-mediated "eat me" signal, which persistently release C176 to suppress STING signaling and thereby promote macrophage M2 polarization specifically. A single dosage can effectively alleviate pathological angiogenesis phenotypes in murine oxygen-induced retinopathy models. In conclusion, these C176-loaded nanoparticles with enhanced cell uptake and long-lasting STING inhibition effects might serve as a promising way for treating RNV.

2.
Adv Ophthalmol Pract Res ; 4(3): 120-127, 2024.
Article in English | MEDLINE | ID: mdl-38846624

ABSTRACT

Background: The convergence of smartphone technology and artificial intelligence (AI) has revolutionized the landscape of ophthalmic care, offering unprecedented opportunities for diagnosis, monitoring, and management of ocular conditions. Nevertheless, there is a lack of systematic studies on discussing the integration of smartphone and AI in this field. Main text: This review includes 52 studies, and explores the integration of smartphones and AI in ophthalmology, delineating its collective impact on screening methodologies, disease detection, telemedicine initiatives, and patient management. The collective findings from the curated studies indicate promising performance of the smartphone-based AI screening for various ocular diseases which encompass major retinal diseases, glaucoma, cataract, visual impairment in children and ocular surface diseases. Moreover, the utilization of smartphone-based imaging modalities, coupled with AI algorithms, is able to provide timely, efficient and cost-effective screening for ocular pathologies. This modality can also facilitate patient self-monitoring, remote patient monitoring and enhancing accessibility to eye care services, particularly in underserved regions. Challenges involving data privacy, algorithm validation, regulatory frameworks and issues of trust are still need to be addressed. Furthermore, evaluation on real-world implementation is imperative as well, and real-world prospective studies are currently lacking. Conclusions: Smartphone ocular imaging merged with AI enables earlier, precise diagnoses, personalized treatments, and enhanced service accessibility in eye care. Collaboration is crucial to navigate ethical and data security challenges while responsibly leveraging these innovations, promising a potential revolution in care access and global eye health equity.

3.
Ophthalmol Ther ; 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734807

ABSTRACT

The integration of artificial intelligence (AI) in ophthalmology has promoted the development of the discipline, offering opportunities for enhancing diagnostic accuracy, patient care, and treatment outcomes. This paper aims to provide a foundational understanding of AI applications in ophthalmology, with a focus on interpreting studies related to AI-driven diagnostics. The core of our discussion is to explore various AI methods, including deep learning (DL) frameworks for detecting and quantifying ophthalmic features in imaging data, as well as using transfer learning for effective model training in limited datasets. The paper highlights the importance of high-quality, diverse datasets for training AI models and the need for transparent reporting of methodologies to ensure reproducibility and reliability in AI studies. Furthermore, we address the clinical implications of AI diagnostics, emphasizing the balance between minimizing false negatives to avoid missed diagnoses and reducing false positives to prevent unnecessary interventions. The paper also discusses the ethical considerations and potential biases in AI models, underscoring the importance of continuous monitoring and improvement of AI systems in clinical settings. In conclusion, this paper serves as a primer for ophthalmologists seeking to understand the basics of AI in their field, guiding them through the critical aspects of interpreting AI studies and the practical considerations for integrating AI into clinical practice.

4.
J Inflamm Res ; 17: 3159-3171, 2024.
Article in English | MEDLINE | ID: mdl-38774448

ABSTRACT

Background: Sepsis is a life-threatening clinical syndrome caused by dysregulated host response to infection. The mechanism underlying sepsis-induced immune dysfunction remains poorly understood. Natural killer T (NKT) cells are cytotoxic lymphocytes that bridge the innate and adaptive immune systems, the role of NKT cells in sepsis is not entirely understood, and NKT cell cluster differences in sepsis remain unexplored. Methods: Mendelian randomization (MR) analyses were first conducted to investigate the causal relationship between side scatter area (SSC-A) on NKT cells and 28-day mortality of septic patients. A prospective and observational study was conducted to validate the relationship between the percentage of NKT cells and 28-day mortality of sepsis. Then, the single-cell RNA sequencing (scRNA-seq) data of peripheral blood mononuclear cells (PBMCs) from healthy controls and septic patients were profiled. Results: MR analyses first revealed the protective roles of NKT cells in the 28-day mortality of sepsis. Then, 115 septic patients were enrolled. NKT percentage was significantly higher in survivors (n = 84) compared to non-survivors (n = 31) (%, 5.00 ± 3.46 vs 2.18 ± 1.93, P < 0.0001). Patients with lower levels of NKT cells exhibited a significantly increased risk of 28-day mortality. According to scRNA-seq analysis, NKT cell clusters exhibited multiple distinctive characteristics, including a distinguishing cluster defined as FOS+NKT cells, which showed a significant decrease in sepsis. Pseudo-time analysis showed that FOS+NKT cells were characterized by upregulated expression of crucial functional genes such as GZMA and CCL4. CellChat revealed that interactions between FOS+NKT cells and adaptive immune cells including B cells and T cells were decreased in sepsis compared to healthy controls. Conclusion: Our findings indicate that NKT cells may protect against sepsis, and their percentage can predict 28-day mortality. Additionally, we discovered a unique FOS+NKT subtype crucial in sepsis immune response, offering novel insights into its immunopathogenesis.

5.
Anal Bioanal Chem ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38802680

ABSTRACT

Mechanotransduction is the essential process that cells convert mechanical force into biochemical responses, and electrochemical sensor stands out from existing techniques by providing quantitative and real-time information about the biochemical signals during cellular mechanotransduction. However, the intracellular biochemical response evoked by mechanical force has been poorly monitored. In this paper, we report a method to apply local stretch on single cell and simultaneously monitor the ensuing intracellular biochemical signals. Specifically, a ferromagnetic micropipette was fabricated to locally stretch a single cell labeled with Fe3O4 nanoparticles under the external magnetic field, and the SiC@Pt nanowire electrode (SiC@Pt NWE) was inserted into the cell to monitor the intracellular hydrogen peroxide (H2O2) production induced by the local stretch. As a proof of concept, this work quantitatively investigated the elevated amount of H2O2 levels in single endothelial cell under different stretching amplitudes. This work puts forward a new research modality to manipulate and monitor the mechanotransduction at the single-cell level.

6.
J Inflamm Res ; 17: 3187-3200, 2024.
Article in English | MEDLINE | ID: mdl-38779429

ABSTRACT

Background: Natural killer (NK) cells are key regulators of immune defense in sepsis-induced acute respiratory distress syndrome (ARDS), yet the characteristics of NK cell clusters in ARDS remain poorly understood. Methods: A prospective and observational study enrolled septic patients with ARDS or not was conducted to determine the percentage of NK cells via flow cytometry. The transcriptomes of peripheral blood mononuclear cells (PBMCs) from healthy controls, patients with sepsis only, and patients with sepsis-induced ARDS were profiled. Vitro experiments were performed to confirm the mechanism mediating MX1+NK cell infiltration. Results: A total of 115 septic patients were analyzed, among whom 63 patients developed ARDS and 52 patients did not. Decreased NK percentages were found in sepsis with ARDS patients (%, 7.46±4.40 vs 11.65±6.88, P=0.0001) compared with sepsis-only patients. A lower percentage of NK cells showed a significant increase in 28-day mortality. Single-cell sequencing analysis revealed distinct characteristics of NK cells in sepsis-induced ARDS, notably the identification of a unique cluster defined as MX1+NK cells. Flow cytometry analysis showed an elevated percentage of MX1+NK cells specifically in individuals with sepsis-induced ARDS, compared with patients with sepsis only. Pseudo-time analysis showed that MX1+NK cells were characterized by upregulation of type I interferon-induced genes and other pro-inflammatory genes. MX1+NK cells can respond to type I interferons and secrete type I interferons themselves. Ligand-receptor interaction analysis also revealed extensive interaction between MX1+NK cells and T/B cells, leading to an uncontrolled inflammatory response in ARDS. Conclusion: MX1+NK cells can respond to type I interferons and secrete type I interferons themselves, promoting the development of sepsis-induced ARDS. Interfering with the infiltration of MX1+NK cells could be a therapeutic approach for this disease. Due to the limited sample size, a larger sample size was needed for further exploration.

7.
JACS Au ; 4(5): 1811-1823, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38818059

ABSTRACT

Single-cell proteomics offers unparalleled insights into cellular diversity and molecular mechanisms, enabling a deeper understanding of complex biological processes at the individual cell level. Here, we develop an integrated sample processing on an active-matrix digital microfluidic chip for single-cell proteomics (AM-DMF-SCP). Employing the AM-DMF-SCP approach and data-independent acquisition (DIA), we identify an average of 2258 protein groups in single HeLa cells within 15 min of the liquid chromatography gradient. We performed comparative analyses of three tumor cell lines: HeLa, A549, and HepG2, and machine learning was utilized to identify the unique features of these cell lines. Applying the AM-DMF-SCP to characterize the proteomes of a third-generation EGFR inhibitor, ASK120067-resistant cells (67R) and their parental NCI-H1975 cells, we observed a potential correlation between elevated VIM expression and 67R resistance, which is consistent with the findings from bulk sample analyses. These results suggest that AM-DMF-SCP is an automated, robust, and sensitive platform for single-cell proteomics and demonstrate the potential for providing valuable insights into cellular mechanisms.

8.
iScience ; 27(5): 109324, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38706854

ABSTRACT

Digital liquid sample handling is an enabling tool for cutting-edge life-sciences research. We present here an active-matrix thin-film transistor (TFT) based digital microfluidics system, referred to as Field Programmable Droplet Array (FPDA). The system contains 256 × 256 pixels in an active area of 10.65 cm2, which can manipulate thousands of addressable liquid droplets simultaneously. By leveraging a novel TFT device and circuits design solution, we manage to programmatically manipulate droplets at single-pixel level. The minimum achievable droplet volume is around 0.5 nL, which is two orders of magnitude smaller than the smallest droplet ever reported on active-matrix digital microfluidics. The movement of droplets can be either pre-programmed or controlled in real-time. The FPDA system shows great potential of the ubiquitous thin-film electronics technology in digital liquid handling. These efforts will make it possible to create a true programmable lab-on-a-chip device to enable great advances in life science research.

9.
Angew Chem Int Ed Engl ; : e202403241, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710651

ABSTRACT

Exocytosis involving the fusion of intracellular vesicles with cell membrane, is thought to be modulated by the mechanical cues in the microenvironment. Single-cell electrochemistry can offer unique information about the quantification and kinetics of exocytotic events, however, the effects of mechanical force on vesicular release has been poorly explored. Herein, we developed a stretchable microelectrode with excellent electrochemical stability under mechanical deformation by microfabrication of functionalized poly(3,4-ethylenedioxythiophene) conductive ink, which achieved real-time quantitation of strain-induced vesicular exocytosis from a single cell for the first time. We found that mechanical strain could cause calcium influx via the activation of Piezo1 channel in chromaffin cell, initiating the vesicular exocytosis process. Interestingly, mechanical strain increases the amount of catecholamines release by accelerating the opening and prolonging the closing of fusion pore during exocytosis. This work is expected to provide a revealing insight on the regulatory effects of mechanical stimuli on vesicular exocytosis.

10.
Int J Ophthalmol ; 17(3): 444-453, 2024.
Article in English | MEDLINE | ID: mdl-38721522

ABSTRACT

AIM: To evaluate the role of semaphorin 7A (Sema7A) and its associated regulatory mechanisms in modulating the barrier function of cultured human corneal epithelial cells (HCEs). METHODS: Barrier models of HCEs were treated with recombinant human Sema7A at concentrations of 0, 125, 250, or 500 ng/mL for 24, 48, or 72h in vitro. Transepithelial electrical resistance (TEER) as well as Dextran-fluorescein isothiocyanate (FITC) permeability assays were conducted to assess barrier function. To quantify tight junctions (TJs) such as occludin and zonula occludens-1 (ZO-1) at the mRNA level, reverse transcription-polymerase chain reaction (RT-PCR) analysis was performed. Immunoblotting was used to examine the activity of the nuclear factor-kappa B (NF-κB) signaling pathway and the production of TJs proteins. Immunofluorescence analyses were employed to localize the TJs. Enzyme-linked immunosorbent assay (ELISA) and RT-PCR were utilized to observe changes in interleukin (IL)-1ß levels. To investigate the role of NF-κB signaling activation and IL-1ß in Sema7A's anti-barrier mechanism, we employed 0.1 µmol/L IκB kinase 2 (IKK2) inhibitor IV or 500 ng/mL IL-1 receptor (IL-1R) antagonist. RESULTS: Treatment with Sema7A resulted in decreased TEER and increased permeability of Dextran-FITC in HCEs through down-regulating mRNA and protein levels of TJs in a time- and dose-dependent manner, as well as altering the localization of TJs. Furthermore, Sema7A stimulated the activation of inhibitor of kappa B alpha (IκBα) and expression of IL-1ß. The anti-barrier function of Sema7A was significantly suppressed by treatment with IKK2 inhibitor IV or IL-1R antagonists. CONCLUSION: Sema7A disrupts barrier function through its influence on NF-κB-mediated expression of TJ proteins, as well as the expression of IL-1ß. These findings suggest that Sema7A could be a potential therapeutic target for the diseases in corneal epithelium.

11.
Animals (Basel) ; 14(9)2024 May 04.
Article in English | MEDLINE | ID: mdl-38731386

ABSTRACT

The utilization of chicken embryonic-derived pluripotent stem cell (PSC) lines is crucial in various fields, including growth and development, vaccine and protein production, and germplasm resource protection. However, the research foundation for chicken PSCs is relatively weak, and there are still challenges in establishing a stable and efficient PSC culture system. Therefore, this study aims to investigate the effects of the FGF2/ERK and WNT/ß-catenin signaling pathways, as well as different feeder layers, on the derivation and maintenance of chicken embryonic-derived PSCs. The results of this study demonstrate that the use of STO cells as feeder layers, along with the addition of FGF2, IWR-1, and XAV-939 (FIX), allows for the efficient derivation of chicken PSC-like cells. Under the FIX culture conditions, chicken PSCs express key pluripotency genes, such as POUV, SOX2, and NANOG, as well as specific proteins SSEA-1, C-KIT, and SOX2, indicating their pluripotent nature. Additionally, the embryoid body experiment confirms that these PSC-like cells can differentiate into cells of three germ layers in vitro, highlighting their potential for multilineage differentiation. Furthermore, this study reveals that chicken Eyal-Giladi and Kochav stage X blastodermal cells express genes related to the primed state of PSCs, and the FIX culture system established in this research maintains the expression of these genes in vitro. These findings contribute significantly to the understanding and optimization of chicken PSC culture conditions and provide a foundation for further exploration of the biomedical research and biotechnological applications of chicken PSCs.

12.
Cell Death Dis ; 15(4): 244, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575607

ABSTRACT

The immunosuppressive microenvironment caused by several intrinsic and extrinsic mechanism has brought great challenges to the immunotherapy of pancreatic cancer. We identified GFPT2, the key enzyme in hexosamine biosynthesis pathway (HBP), as an immune-related prognostic gene in pancreatic cancer using transcriptome sequencing and further confirmed that GFPT2 promoted macrophage M2 polarization and malignant phenotype of pancreatic cancer. HBP is a glucose metabolism pathway leading to the generation of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), which is further utilized for protein O-GlcNAcylation. We confirmed GFPT2-mediated O-GlcNAcylation played an important role in regulating immune microenvironment. Through cellular proteomics, we identified IL-18 as a key downstream of GFPT2 in regulating the immune microenvironment. Through CO-IP and protein mass spectrum, we confirmed that YBX1 was O-GlcNAcylated and nuclear translocated by GFPT2-mediated O-GlcNAcylation. Then, YBX1 functioned as a transcription factor to promote IL-18 transcription. Our study elucidated the relationship between the metabolic pathway of HBP in cancer cells and the immune microenvironment, which might provide some insights into the combination therapy of HBP vulnerability and immunotherapy in pancreatic cancer.


Subject(s)
Interleukin-18 , Pancreatic Neoplasms , Humans , Glycosylation , Interleukin-18/metabolism , Pancreatic Neoplasms/pathology , Proteins/metabolism , Biosynthetic Pathways , Hexosamines , Tumor Microenvironment , Y-Box-Binding Protein 1/metabolism , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/genetics
13.
Int J Pharm ; 657: 124151, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38657717

ABSTRACT

Neovascularization contributes to various posterior eye segment diseases such as age-related macular degeneration and diabetic retinopathy. RNA nanoparticles were demonstrated previously to enter the corneal and retinal cells after subconjunctival injection for ocular delivery. In the present study, antiangiogenic aptamers (anti-vascular endothelial growth factor (VEGF) and anti-angiopoietin-2 (Ang2) aptamers) were conjugated to RNA nanoparticles. The objectives were to investigate the clearance and distribution of these angiogenesis-inhibiting RNA nanoparticles after subconjunctival injection in vivo and their antiangiogenic effects for inhibiting ocular neovascularization in vitro. The results in the whole-body fluorescence imaging study showed that the clearance of RNA nanoparticles was size-dependent with no significant differences between RNA nanoparticles with and without the aptamers except for pRNA-3WJ. The distribution study of RNA nanoparticles by confocal microscopy of the dissected eye tissues in vivo indicated cell internalization of the larger RNA nanoparticles in the retina and retinal pigment epithelium after subconjunctival injection, and the larger nanoparticles with aptamers showed higher levels of cell internalization than those without. In the cell proliferation assay in vitro, RNA nanoparticles with multiple aptamers had higher antiangiogenic effects. With both longer retention time and high antiangiogenic effect, SQR-VEGF-Ang2 could be a promising RNA nanoparticle for posterior eye delivery.


Subject(s)
Angiogenesis Inhibitors , Nanoparticles , RNA , Vascular Endothelial Growth Factor A , Animals , Nanoparticles/chemistry , Angiogenesis Inhibitors/administration & dosage , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/chemistry , RNA/administration & dosage , Aptamers, Nucleotide/administration & dosage , Aptamers, Nucleotide/chemistry , Humans , Angiopoietin-2 , Male , Mice , Conjunctiva/metabolism , Injections, Intraocular , Cell Proliferation/drug effects , Neovascularization, Pathologic/drug therapy , Human Umbilical Vein Endothelial Cells/drug effects , Retina/metabolism , Retina/drug effects , Drug Delivery Systems/methods , Mice, Inbred C57BL , Angiogenesis
14.
Mol Biotechnol ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683442

ABSTRACT

Hepatocellular carcinoma (HCC) is a common type of cancer that ranks first in cancer-associated death worldwide. Carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD) are the key components of the pyrimidine pathway, which promotes cancer development. However, the function of CAD in HCC needs to be clarified. In this study, the clinical and transcriptome data of 424 TCGA-derived HCC cases were analyzed. The results demonstrated that high CAD expression was associated with poor prognosis in HCC patients. The effect of CAD on HCC was then investigated comprehensively using GO annotation analysis, KEGG enrichment analysis, Gene Set Enrichment Analysis (GSEA), and CIBERSORT algorithm. The results showed that CAD expression was correlated with immune checkpoint inhibitors and immune cell infiltration. In addition, low CAD levels in HCC patients predicted increased sensitivity to anti-CTLA4 and PD1, while HCC patients with high CAD expression exhibited high sensitivity to chemotherapeutic and molecular-targeted agents, including gemcitabine, paclitaxel, and sorafenib. Finally, the results from clinical sample suggested that CAD expression increased remarkably in HCC compared with non-cancerous tissues. Loss of function experiments demonstrated that CAD knockdown could significantly inhibit HCC cell growth and migration both in vitro and in vivo. Collectively, the results indicated that CAD is a potential oncogene during HCC metastasis and progression. Therefore, CAD is recommended as a candidate marker and target for HCC prediction and treatment.

15.
Front Nutr ; 11: 1379317, 2024.
Article in English | MEDLINE | ID: mdl-38638289

ABSTRACT

Importance: Various studies have widely explored the association between index of dietary inflammation (DII) and occurrence of diseases. Accumulating evidence have revealed that a lower DII seems to be protective against a variety of diseases. Nevertheless, the association between DII and age-related cataract remains unclear. Objective: To investigate the correlation between DII and age-related cataract in a representative sample of the American population. Design setting and participants: This cross-sectional population-based study comprised 6,395 participants from the National Health and Nutrition Examination Survey (NHANES) conducted in cycles from 2005 to 2008. DII was calculated using dietary recall information, with higher scores indicating greater inflammatory potential of the diet. Age-related cataract was evaluated using cataract surgery as a surrogate measure. Covariates included sociodemographic factors, lifestyle factors, physical measures, and comorbidities. Logistic regression models were employed to assess the association between DII and cataract. The presence of a non-linear relationship was examined using restricted cubic spline analysis. Subgroup analysis was conducted to explore potential interaction effects. Data analysis was performed from September 1 to December 30, 2022. Main outcomes and measures: Age-related cataract assessed through cataract surgery information obtained from a self-reported questionnaire. Results: A total of 6,395 participants were included, with a mean (standard deviation, SD) age of 48.7 (15.3) years. Of these, 3,115 (48.7%) were male, 3,333 (52.1%) were non-Hispanic white, and 683 (10.7%) had cataract. The mean (SD) DII was -4.78 (1.74). After adjusting for all included covariates, DII showed a positive association with cataract, both as a continuous variable (odds ratio (OR): 1.054, 95% confidence interval (CI): 1.007-1.103, p = 0.023) and in quartiles, with the highest quartile compared to the lowest (OR: 1.555, 95% CI: 1.233-1.967, p < 0.001). Restricted cubic spline analysis revealed no evidence of a non-linear relationship (p for non-linearity 0.085). Subgroup analysis indicated no interaction effects among the studied covariates. Conclusions and relevance: These findings suggest that a pro-inflammatory diet serves as a risk factor for the occurrence of cataracts.

16.
Surv Ophthalmol ; 69(4): 499-507, 2024.
Article in English | MEDLINE | ID: mdl-38492584

ABSTRACT

Artificial Intelligence (AI) has become a focus of research in the rapidly evolving field of ophthalmology. Nevertheless, there is a lack of systematic studies on the health economics of AI in this field. We examine studies from the PubMed, Google Scholar, and Web of Science databases that employed quantitative analysis, retrieved up to July 2023. Most of the studies indicate that AI leads to cost savings and improved efficiency in ophthalmology. On the other hand, some studies suggest that using AI in healthcare may raise costs for patients, especially when taking into account factors such as labor costs, infrastructure, and patient adherence. Future research should cover a wider range of ophthalmic diseases beyond common eye conditions. Moreover, conducting extensive health economic research, designed to collect data relevant to its own context, is imperative.


Subject(s)
Artificial Intelligence , Eye Diseases , Humans , Artificial Intelligence/economics , Eye Diseases/diagnosis , Eye Diseases/economics , Ophthalmology/economics , Cost-Benefit Analysis , Health Care Costs , Mass Screening/economics , Mass Screening/methods
17.
Mol Genet Genomics ; 299(1): 41, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38551742

ABSTRACT

Primordial germ cells (PGCs) are the ancestors of female and male germ cells. Recent studies have shown that long non-coding RNA (lncRNA) and histone methylation are key epigenetic factors affecting PGC formation; however, their joint regulatory mechanisms have rarely been studied. Here, we explored the mechanism by which lncCPSET1 and H3K4me2 synergistically regulate the formation of chicken PGCs for the first time. Combined with chromatin immunoprecipitation (CHIP) sequencing and RNA-seq of PGCs transfected with the lncCPSET1 overexpression vector, GO annotation and KEGG enrichment analysis revealed that Wnt and TGF-ß signaling pathways were significantly enriched, and Fzd2, Id1, Id4, and Bmp4 were identified as candidate genes. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) showed that ASH2L, DPY30, WDR5, and RBBP5 overexpression significantly increased the expression of Bmp4, which was up-regulated after lncCPSET1 overexpression as well. It indicated that Bmp4 is a target gene co-regulated by lncCPSET1 and MLL2/COMPASS. Interestingly, co-immunoprecipitation results showed that ASH2L, DPY30 and WDR5 combined and RBBP5 weakly combined with DPY30 and WDR5. lncCPSET1 overexpression significantly increased Dpy30 expression and co-immunoprecipitation showed that interference/overexpression of lncCPSET1 did not affect the binding between the proteins in the complexes, but interference with lncCPSET1 inhibited DPY30 expression, which was confirmed by RNA immunoprecipitation that lncCPSET1 binds to DPY30. Additionally, CHIP-qPCR results showed that DPY30 enriched in the Bmp4 promoter region promoted its transcription, thus promoting the formation of PGCs. This study demonstrated that lncCPSET1 and H3K4me2 synergistically promote PGC formation, providing a reference for the study of the regulatory mechanisms between lncRNA and histone methylation, as well as a molecular basis for elucidating the formation mechanism of PGCs in chickens.


Subject(s)
Chickens , RNA, Long Noncoding , Male , Animals , Female , Chickens/genetics , Chickens/metabolism , Histones/genetics , Histones/metabolism , RNA, Long Noncoding/metabolism , Methylation , Germ Cells
18.
Artif Intell Med ; 150: 102837, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38553151

ABSTRACT

The thickness of the choroid is considered to be an important indicator of clinical diagnosis. Therefore, accurate choroid segmentation in retinal OCT images is crucial for monitoring various ophthalmic diseases. However, this is still challenging due to the blurry boundaries and interference from other lesions. To address these issues, we propose a novel prior-guided and knowledge diffusive network (PGKD-Net) to fully utilize retinal structural information to highlight choroidal region features and boost segmentation performance. Specifically, it is composed of two parts: a Prior-mask Guided Network (PG-Net) for coarse segmentation and a Knowledge Diffusive Network (KD-Net) for fine segmentation. In addition, we design two novel feature enhancement modules, Multi-Scale Context Aggregation (MSCA) and Multi-Level Feature Fusion (MLFF). The MSCA module captures the long-distance dependencies between features from different receptive fields and improves the model's ability to learn global context. The MLFF module integrates the cascaded context knowledge learned from PG-Net to benefit fine-level segmentation. Comprehensive experiments are conducted to evaluate the performance of the proposed PGKD-Net. Experimental results show that our proposed method achieves superior segmentation accuracy over other state-of-the-art methods. Our code is made up publicly available at: https://github.com/yzh-hdu/choroid-segmentation.


Subject(s)
Choroid , Learning , Choroid/diagnostic imaging , Retina/diagnostic imaging , Image Processing, Computer-Assisted
19.
Acta Pharm Sin B ; 14(3): 1111-1131, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38486983

ABSTRACT

Conventional photodynamic therapy (PDT) approaches face challenges including limited light penetration, low uptake of photosensitizers by tumors, and lack of oxygen in tumor microenvironments. One promising solution is to internally generate light, photosensitizers, and oxygen. This can be accomplished through endogenous production, such as using bioluminescence as an endogenous light source, synthesizing genetically encodable photosensitizers in situ, and modifying cells genetically to express catalase enzymes. Furthermore, these strategies have been reinforced by the recent rapid advancements in synthetic biology. In this review, we summarize and discuss the approaches to overcome PDT obstacles by means of endogenous production of excitation light, photosensitizers, and oxygen. We envision that as synthetic biology advances, genetically engineered cells could act as precise and targeted "living factories" to produce PDT components, leading to enhanced performance of PDT.

20.
Fa Yi Xue Za Zhi ; 40(1): 37-42, 2024 Feb 25.
Article in English, Chinese | MEDLINE | ID: mdl-38500459

ABSTRACT

OBJECTIVES: To investigate the toxicokinetic differences of 3,4-methylenedioxy-N-methylamphetamine (MDMA) and its metabolite 4,5-methylene dioxy amphetamine (MDA) in rats after single and continuous administration of MDMA, providing reference data for the forensic identification of MDMA. METHODS: A total of 24 rats in the single administration group were randomly divided into 5, 10 and 20 mg/kg experimental groups and the control group, with 6 rats in each group. The experimental group was given intraperitoneal injection of MDMA, and the control group was given intraperitoneal injection of the same volume of normal saline as the experimental group. The amount of 0.5 mL blood was collected from the medial canthus 5 min, 30 min, 1 h, 1.5 h, 2 h, 4 h, 6 h, 8 h, 10 h, 12 h after administration. In the continuous administration group, 24 rats were randomly divided into the experimental group (18 rats) and the control group (6 rats). The experimental group was given MDMA 7 d by continuous intraperitoneal injection in increments of 5, 7, 9, 11, 13, 15, 17 mg/kg per day, respectively, while the control group was given the same volume of normal saline as the experimental group by intraperitoneal injection. On the eighth day, the experimental rats were randomly divided into 5, 10 and 20 mg/kg dose groups, with 6 rats in each group. MDMA was injected intraperitoneally, and the control group was injected intraperitoneally with the same volume of normal saline as the experimental group. On the eighth day, 0.5 mL of blood was taken from the medial canthus 5 min, 30 min, 1 h, 1.5 h, 2 h, 4 h, 6 h, 8 h, 10 h, 12 h after administration. Liquid chromatography-triple quadrupole tandem mass spectrometry was used to detect MDMA and MDA levels, and statistical software was employed for data analysis. RESULTS: In the single-administration group, peak concentrations of MDMA and MDA were reached at 5 min and 1 h after administration, respectively, with the largest detection time limit of 12 h. In the continuous administration group, peak concentrations were reached at 30 min and 1.5 h after administration, respectively, with the largest detection time limit of 10 h. Nonlinear fitting equations for the concentration ratio of MDMA and MDA in plasma and administration time in the single-administration group and continuous administration group were as follows: T=10.362C-1.183, R2=0.974 6; T=7.397 3C-0.694, R2=0.961 5 (T: injection time; C: concentration ratio of MDMA to MDA in plasma). CONCLUSIONS: The toxicokinetic data of MDMA and its metabolite MDA in rats, obtained through single and continuous administration, including peak concentration, peak time, detection time limit, and the relationship between concentration ratio and administration time, provide a theoretical and data foundation for relevant forensic identification.


Subject(s)
3,4-Methylenedioxyamphetamine , Amphetamines , N-Methyl-3,4-methylenedioxyamphetamine , Rats , Animals , Amphetamine , N-Methyl-3,4-methylenedioxyamphetamine/toxicity , 3,4-Methylenedioxyamphetamine/analysis , Toxicokinetics , Saline Solution
SELECTION OF CITATIONS
SEARCH DETAIL
...