Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biomaterials ; 300: 122204, 2023 09.
Article in English | MEDLINE | ID: mdl-37329683

ABSTRACT

Covalent organic framework (COF) crystalline biomaterials have great potential for drug delivery since they can load large amounts of small molecules (e.g. metabolites) and release them in a controlled manner, as compared to their amorphous counterparts. Herein, we screened different metabolites for their ability to modulate T cell responses in vitro and identified Kynurenine (KyH) as a key metabolite that not only decreases frequency of pro-inflammatory RORgt + T cells but also supports frequency of anti-inflammatory GATA3+ T cells. Moreover, we developed a methodology to generate imine-based TAPB-PDA COF at room temperature and loaded these COFs with KyH. KyH loaded COFs (COF-KyH) were able to then release KyH in a controlled manner for 5 days in vitro. Notably, COF-KyH when delivered orally in mice induced with collagen-induced rheumatoid arthritis (CIA) were able to increase frequency of anti-inflammatory GATA3+CD8+ T cells in the lymph nodes and decrease antibody titers in the serum as compared to the controls. Overall, these data demonstrate that COFs can be an excellent drug delivery vehicle for delivering immune modulating small molecule metabolites.


Subject(s)
Arthritis, Experimental , Metal-Organic Frameworks , Animals , Mice , Arthritis, Experimental/drug therapy , Kynurenine , CD8-Positive T-Lymphocytes , Disease Models, Animal , Excipients
2.
Small ; 17(45): e2100817, 2021 11.
Article in English | MEDLINE | ID: mdl-34176201

ABSTRACT

3D printing (additive manufacturing (AM)) has enormous potential for rapid tooling and mass production due to its design flexibility and significant reduction of the timeline from design to manufacturing. The current state-of-the-art in 3D printing focuses on material manufacturability and engineering applications. However, there still exists the bottleneck of low printing resolution and processing rates, especially when nanomaterials need tailorable orders at different scales. An interesting phenomenon is the preferential alignment of nanoparticles that enhance material properties. Therefore, this review emphasizes the landscape of nanoparticle alignment in the context of 3D printing. Herein, a brief overview of 3D printing is provided, followed by a comprehensive summary of the 3D printing-enabled nanoparticle alignment in well-established and in-house customized 3D printing mechanisms that can lead to selective deposition and preferential orientation of nanoparticles. Subsequently, it is listed that typical applications that utilized the properties of ordered nanoparticles (e.g., structural composites, heat conductors, chemo-resistive sensors, engineered surfaces, tissue scaffolds, and actuators based on structural and functional property improvement). This review's emphasis is on the particle alignment methodology and the performance of composites incorporating aligned nanoparticles. In the end, significant limitations of current 3D printing techniques are identified together with future perspectives.


Subject(s)
Nanoparticles , Nanostructures , Printing, Three-Dimensional , Tissue Scaffolds
3.
ACS Macro Lett ; 10(10): 1196-1203, 2021 Oct 19.
Article in English | MEDLINE | ID: mdl-35549054

ABSTRACT

We report a scalable melt blowing method for producing porous nonwoven fibers from model cocontinuous polystyrene/high-density polyethylene polymer blends. While conventional melt compounding of cocontinuous blends typically produces domain sizes ∼1-10 µm, melt blowing these blends into fibers reduces those dimensions up to 35-fold and generates an interpenetrating domain structure. Inclusion of ≤1 wt % of a block copolymer compatibilizer in these blends crucially enables access to smaller domain sizes in the fibers by minimizing thermodynamically-driven blend coarsening inherent to cocontinuous blends. Selective solvent extraction of the sacrificial polymer phase yielded a network of porous channels within the fibers. Fiber surfaces also exhibited pores that percolate into the fiber interior, signifying the continuous and interconnected nature of the final structure. Pore sizes as small as ∼100 nm were obtained, suggesting potential applications of these porous nonwovens that rely on their high surface areas, including various filtration modules.

4.
ACS Cent Sci ; 6(6): 921-927, 2020 Jun 24.
Article in English | MEDLINE | ID: mdl-32607439

ABSTRACT

Cross-linked polyurethane (PU) is extensively used as thermoset foam; however, methods to directly reprocess PU foam waste derived from commercial sources into similar value materials have not been developed. We demonstrate that introducing dibutyltin dilaurate (DBTDL) into cross-linked PU foams and films enables their reprocessing at elevated temperatures via dynamic carbamate exchange reactions. Both model and commercial cross-linked PU foams were continuously reprocessed using twin-screw extrusion to remove gaseous filler and produce PU filaments or films with elastomeric or rigid thermoset mechanical properties. The properties of microcompounded model PU foam were in excellent agreement with PU film synthesized using the same monomers, indicating that this process occurs efficiently. These findings will enable the bulk reprocessing of commercial thermoset PU waste and inspire the further development of reprocessing methods for other thermosets and the compatibilization of chemically distinct cross-linked materials.

5.
ACS Appl Mater Interfaces ; 12(8): 9726-9735, 2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32017525

ABSTRACT

Plastic pollution is one of the most pressing global environmental issues we face today, in part due to the continued rise in production and use of disposable plastic products. Polyolefins and polyesters are two of the most prevalent polymers in the world accounting for ∼80% of total nonfiber plastic production. Recycling, despite being intrinsically environmentally friendly and sometimes economically viable, remains at a surprisingly low level (<9% in the U.S.) with most plastic waste ending up in landfills. One reason for this low rate of recycling stems from the challenge of recycling mixed waste streams and multicomponent plastics. In mixed waste streams, physical presorting of components prior to recycling requires significant effort, which translates to added cost. For multicomponent plastics (e.g., multilayer films such as food wrappers), the individual plastic components cannot be efficiently physically separated, and they are immiscible with poor interfacial adhesion when melt reprocessed. Thus, direct recycling of mixed plastics by melt reprocessing results in products that lack desired end-use properties. In this study, we describe the synthesis of novel poly(ethylene terephthalate)-polyethylene multiblock copolymers (PET-PE MBCPs) and evaluate their utility as adhesive tie layers in multilayer films and compatibilizer additives for melt reprocessed blends. PET and PE are targeted because they are two of the most prevalent commercial polymers in the world and are high volume waste streams. The work described here demonstrates two key findings. First, the PET-PE MBCPs serve as effective adhesive tie layers between neat PET/PE films with adhesive strength comparable to that of commercially available adhesives. Second, PET/PE (80/20 wt %) blends containing ∼0.5 wt % PET-PE MBCP were melt mixed to mimic recycling mixed plastic waste, and they were found to exhibit mechanical properties better than neat PET. Overall, this study demonstrates that PET-PE MBCPs could significantly enhance the ability to recycle PET/PE mixed waste streams by serving the role as both an adhesive promoting layer and a compatibilizer additive.

6.
ACS Appl Mater Interfaces ; 11(13): 12863-12870, 2019 Apr 03.
Article in English | MEDLINE | ID: mdl-30843683

ABSTRACT

Melt blowing combines extrusion of a polymer melt through orifices and attenuation of the extrudate with hot high-velocity air jets to produce nonwoven fibers in a single step. Due to its simplicity and high-throughput nature, melt blowing produces more than 10% of global nonwovens (∼$50 billion market). Semicrystalline thermoplastic feedstock, such as poly(butylene terephthalate), polyethylene, and polypropylene, have dominated the melt blowing industry because of their facile melt processability and thermal/chemical resistance; other amorphous commodity thermoplastics (e.g., styrenics, (meth)acrylates, etc.) are generally not employed because they lack one or both characteristics. Cross-linking commodity polymers could enable them to serve more demanding applications, but cross-linking is not compatible with melt processing, and it must be implemented after fiber formation. Here, cross-linked fibers were fabricated by melt blowing linear anthracene-functionalized acrylic polymers into fibers, which were subsequently cross-linked via anthracene-dimerization triggered by either UV light or sunlight. The resulting fibers possessed nearly 100% gel content because of highly efficient anthracene photodimerization in the solid state. Compared to the linear precursors, the anthracene-dimer cross-linked acrylic fibers exhibited enhanced thermomechanical properties suggesting higher upper service temperatures (∼180 °C), showing promise for replacing traditional thermoplastic-based melt blown nonwovens in certain applications. Additionally, given the dynamic nature of the anthracene-dimer cross-links at elevated temperatures (> ∼180 °C), the resulting cross-linked fibers could be effectively recycled after use, providing new avenues toward sustainable nonwoven products.

7.
ACS Macro Lett ; 7(11): 1339-1345, 2018 Nov 20.
Article in English | MEDLINE | ID: mdl-35651240

ABSTRACT

Melt blowing is a process in which liquid polymer is extruded through orifices and then drawn by hot air jets to produce nonwoven fibers with average diameters typically greater than one micron. Melt-blown nonwoven fiber products constitute a significant fraction (i.e., more than 10%) of the $50 billion global nonwovens market. Thermoplastic feedstocks, such as polyethylene, polypropylene, poly(phenylene sulfide), and poly(butylene terephthalate), have dominated melt-blown nonwovens because of their combined cost, good chemical resistance, and high-temperature performance. Cross-linked nonwovens from other commodity polymers (e.g., (meth)acrylates, styrenics, silicones, etc.) could be attractive alternatives; however, no commercial cross-linked nonwovens currently exist. Here, cross-linked fibers were produced via one-step melt blowing of thermoreversible Diels-Alder polymer networks comprised of furan- and maleimide-functional methacrylate-based polymer backbones. These dynamic networks de-cross-link and flow like viscous liquids under melt-blowing conditions and then revert to a network via cooling-induced cross-linking during/after melt blowing. Finally, the resulting cross-linked fibers can be recycled after use because of their reversible dynamic nature, which may help address microfiber waste as a significant source of microplastic pollution.

8.
Adv Mater ; 28(31): 6746-50, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27206061

ABSTRACT

A nitroxide-mediated polymerization strategy allows one-step synthesis of recyclable crosslinked polymeric materials from any monomers or polymers that contain carbon-carbon double bonds amenable to radical polymerization. The resulting materials with dynamic covalent bonds can show full property recovery after multiple melt-reprocessing recycles. This one-step strategy provides for both robust, relatively sustainable recyclability of crosslinked polymers and design of networks for advanced technologies.

SELECTION OF CITATIONS
SEARCH DETAIL
...