Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 262(Pt 2): 129994, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38325690

ABSTRACT

Coix seed polysaccharides had received increasing attention due to their diverse biological activities. In this study, a homogeneous polysaccharide (CSPW) was extracted and purified from coix seed. Furthermore, the saliva-gastrointestinal digestion and fecal fermentation behavior of CSPW were simulated in vitro. The results showed that CSPW was mainly composed of glucose. It cannot be degraded by the simulated salivary and intestinal digestive system, but can be degraded by the simulated gastric digestive system. After fermentation for 24 h, CSPW promoted the production of short-chain fatty acids (SCFAs), with acetic acid, propionic acid and n-butyric acid being the main metabolites. In addition, CSPW could significantly regulate the composition and microbial diversity of gut microbiota by increasing the relative abundance of beneficial bacteria, such as Limosilicactobacillus, Bifidobacterium and Collinsella. Finally, further analysis of functional prediction revealed that amino acid metabolism, nucleotide metabolism and carbohydrate metabolism were the most important pathways for CSPW to promote health. In summary, our findings suggested that CSPW could potentially be used as a good source of prebiotics because it can be used by gut microbiota to produce SCFAs and regulate the gut microbiota.


Subject(s)
Coix , Gastrointestinal Microbiome , Digestion , Fatty Acids, Volatile/metabolism , Feces/microbiology , Fermentation , Gastrointestinal Microbiome/physiology , Health Promotion , Polysaccharides/chemistry , Seeds/metabolism , Humans
2.
Plant Cell Environ ; 46(2): 363-378, 2023 02.
Article in English | MEDLINE | ID: mdl-36444099

ABSTRACT

Photosynthesis is a process that uses solar energy to fix CO2 in the air and converts it into sugar, and ultimately powers almost all life activities on the earth. C3 photosynthesis is the most common form of photosynthesis in crops. Current efforts of increasing crop yields in response to growing global food requirement are mostly focused on improving C3 photosynthesis. In this review, we summarized the strategies of C3 photosynthesis improvement in terms of Rubisco properties and photorespiratory limitation. Potential engineered targets include Rubisco subunits and their catalytic sites, Rubisco assembly chaperones, and Rubisco activase. In addition, we reviewed multiple photorespiratory bypasses built by strategies of synthetic biology to reduce the release of CO2 and ammonia and minimize energy consumption by photorespiration. The potential strategies are suggested to enhance C3 photosynthesis and boost crop production.


Subject(s)
Biochemical Phenomena , Ribulose-Bisphosphate Carboxylase , Ribulose-Bisphosphate Carboxylase/metabolism , Carbon Dioxide , Photosynthesis/physiology , Crops, Agricultural/physiology
3.
Glob Chang Biol ; 29(2): 505-521, 2023 01.
Article in English | MEDLINE | ID: mdl-36300859

ABSTRACT

Extreme climatic events, such as heat waves, cold snaps and drought spells, related to global climate change, have become more frequent and intense in recent years. Acclimation of plant physiological processes to changes in environmental conditions is a key component of plant adaptation to climate change. We assessed the temperature response of leaf photosynthetic parameters in wheat grown under contrasting water regimes and growth temperatures (Tgrowth ). Two independent experiments were conducted under controlled conditions. In Experiment 1, two wheat genotypes were subjected to well-watered or drought-stressed treatments; in Experiment 2, the two water regimes combined with high, medium and low Tgrowth were imposed on one genotype. Parameters of a biochemical C3 -photosynthesis model were estimated at six leaf temperatures for each factor combination. Photosynthesis acclimated more to drought than to Tgrowth . Drought affected photosynthesis by lowering its optimum temperature (Topt ) and the values at Topt of light-saturated net photosynthesis, stomatal conductance, mesophyll conductance, the maximum rate of electron transport (Jmax ) and the maximum rate of carboxylation by Rubisco (Vcmax ). Topt for Vcmax was up to 40°C under well-watered conditions but 24-34°C under drought. The decrease in photosynthesis under drought varied among Tgrowth but was similar between genotypes. The temperature response of photosynthetic quantum yield under drought was partly attributed to photorespiration but more to alternative electron transport. All these changes in biochemical parameters could not be fully explained by the changed leaf nitrogen content. Further model analysis showed that both diffusional and biochemical parameters of photosynthesis and their thermal sensitivity acclimate little to Tgrowth , but acclimate considerably to drought and the combination of drought and Tgrowth . The commonly used modelling approaches, which typically consider the response of diffusional parameters, but ignore acclimation responses of biochemical parameters to drought and Tgrowth , strongly overestimate leaf photosynthesis under variable temperature and drought.


Subject(s)
Photosynthesis , Triticum , Triticum/genetics , Photosynthesis/physiology , Droughts , Acclimatization , Water , Plant Leaves , Carbon Dioxide
4.
PLoS One ; 13(2): e0191015, 2018.
Article in English | MEDLINE | ID: mdl-29444111

ABSTRACT

Mitogen-activated protein kinase (MAPK or MPK) cascades play key roles in responses to various biotic stresses, as well as in plant growth and development. However, the responses of MPK and MPK kinase (MKK) in Chinese cabbage (Brassica rapa ssp. pekinensis) to Plasmodiophora brassicae, a causal agent of clubroot disease in Brassica crops, are still not clear. In the present study, a total of 11 B. rapa MKK (BraMKK) and 30 BraMPK genes were identified and unevenly distributed in 6 and 10 chromosomes, respectively. The synteny analysis indicated that these genes experienced whole-genome triplication and segmental and tandem duplication during or after the divergence of B. rapa, accompanied by the loss of three MKK and two MPK orthologs of Arabidopsis. The BraMKK and BraMPK genes were classified into four groups with similar intron/exon structures and conserved motifs in each group. A quantitative PCR analysis showed that the majority of BraMKK and BraMPK genes were natively expressed in roots, hypocotyls, and leaves, whereas 5 BraMKK and 16 BraMPK genes up-regulated in the roots upon P. brassicae infection. Additionally, these 5 BraMKK and 16 BraMPK genes exhibited a significantly different expression pattern between a pair of clubroot-resistant/susceptible near-isogenic lines (NILs). Furthermore, the possible modules of MKK-MPK involved in B. rapa-P. brassicae interaction are also discussed. The present study will provide functional clues for further characterization of the MAPK cascades in B. rapa.


Subject(s)
Brassica/genetics , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinases/genetics , Amino Acid Sequence , Brassica/metabolism , Brassica/microbiology , Gene Expression Regulation, Plant/genetics , Genes, Plant/genetics , Genome, Plant/genetics , Genome-Wide Association Study , Mitogen-Activated Protein Kinase Kinases/metabolism , Phylogeny , Plant Diseases/genetics , Plasmodiophorida/genetics , Plasmodiophorida/pathogenicity , Synteny/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...