Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38761288

ABSTRACT

To investigate the correlation between quantitative plaque parameters, the perivascular fat attenuation index, and myocardial ischaemia caused by haemodynamic impairment. Patients with stable angina who had invasive flow reserve fraction (FFR) assessment and coronary artery computed tomography (CT) angiography were retrospectively enrolled. A total of 138 patients were included in this study, which were categorized into the FFR < 0.75 group (n = 43), 0.75 ≤ FFR ≤ 0.8 group (n = 37), and FFR > 0.8 group (n = 58), depending on the range of FFR values. The perivascular FAI and CTA-derived parameters, including plaque length (PL), total plaque volume (TPV), minimum lumen area (MLA), and narrowest degree (ND), were recorded for the lesions. An FFR < 0.75 was defined as myocardial-specific ischaemia. The relationships between myocardial ischaemia and parameters such as the PL, TPV, MLA, ND, and FAI were analysed using a logistic regression model and receiver operating characteristic (ROC) curves to compare the diagnostic accuracy of various indicators for myocardial ischaemia. The PL, TPV, ND, and FAI were greater in the FFR < 0.75 group than in the grey area group and the FFR > 0.80 group (all p < 0.05). The MLA in the FFR < 0.75 group was lower than that in the grey area group and the FFR > 0.80 group (both P < 0.05). There were no significant differences in the PL, TPV, or ND between the grey area and the FFR > 0.80 group, but there was a significant difference in the FAI. The coronary artery lesions with FFRs ≤ 0.75 had the greatest FAI values. Multivariate analysis revealed that the perivascular FAI and PL density are significant predictors of myocardial ischaemia. The FAI has some predictive value for myocardial ischaemia (AUC = 0.781). After building a combination model using the FAI and plaque length, the predictive power increased (AUC, 0.781 vs. 0.918), and the change was statistically significant (P < 0.001). The combined model of PL + FAI demonstrated great diagnostic efficacy in identifying myocardial ischaemia caused by haemodynamic impairment; the lower the FFR was, the greater the FAI. Thus, the PL + FAI could be a combined measure to securely rule out myocardial ischaemia.

2.
Mol Pain ; 19: 17448069231185439, 2023.
Article in English | MEDLINE | ID: mdl-37321969

ABSTRACT

Mechanical allodynia can be evoked by punctate pressure contact with the skin (punctate mechanical allodynia) and dynamic contact stimulation induced by gentle touching of the skin (dynamic mechanical allodynia). Dynamic allodynia is insensitive to morphine treatment and is transmitted through the spinal dorsal horn by a specific neuronal pathway, which is different from that for punctate allodynia, leading to difficulties in clinical treatment. K+-Cl- cotransporter-2 (KCC2) is one of the major determinants of inhibitory efficiency, and the inhibitory system in the spinal cord is important in the regulation of neuropathic pain. The aim of the current study was to determine whether neuronal KCC2 is involved in the induction of dynamic allodynia and to identify underlying spinal mechanisms involved in this process. Dynamic and punctate allodynia were assessed using either von Frey filaments or a paint brush in a spared nerve injury (SNI) mouse model. Our study discovered that the downregulated neuronal membrane KCC2 (mKCC2) in the spinal dorsal horn of SNI mice is closely associated with SNI-induced dynamic allodynia, as the prevention of KCC2 downregulation significantly suppressed the induction of dynamic allodynia. The over activation of microglia in the spinal dorsal horn after SNI was at least one of the triggers in SNI-induced mKCC2 reduction and dynamic allodynia, as these effects were blocked by the inhibition of microglial activation. Finally, the BDNF-TrkB pathway mediated by activated microglial affected SNI-induced dynamic allodynia through neuronal KCC2 downregulation. Overall, our findings revealed that activation of microglia through the BDNF-TrkB pathway affected neuronal KCC2 downregulation, contributing to dynamic allodynia induction in an SNI mouse model.


Subject(s)
Hyperalgesia , Symporters , Animals , Mice , Brain-Derived Neurotrophic Factor/metabolism , Down-Regulation , Hyperalgesia/metabolism , Microglia , Signal Transduction , Spinal Cord/metabolism , Spinal Cord Dorsal Horn/metabolism , Symporters/metabolism , K Cl- Cotransporters
3.
Exp Biol Med (Maywood) ; 247(15): 1317-1329, 2022 08.
Article in English | MEDLINE | ID: mdl-35521936

ABSTRACT

Inhibin subunit ßA (INHBA) is a protein-coding gene belonging to the transforming growth factor ß (TGFß) superfamily, which is associated with the development of a variety of cancers. However, the role of INHBA in head and neck squamous cell carcinoma (HNSC) remains unclear. The expression profile and prognostic significance of INHBA in HNSC were assessed using a variety of informatics methods. The level of INHBA expression was significantly higher in patients with HNSC, and it was correlated with sex, tumor-node-metastasis (TNM) stage, histological grade, and human papillomavirus (HPV) status. Kaplan-Meier (K-M) analysis indicated that poor overall survival (OS) and disease-free survival (DFS) were significantly associated with INHBA upregulation in HNSC. INHBA overexpression was validated as an independent poor prognostic factor by multivariate Cox regression, and including INHBA expression level in the prognostic model could increase prediction accuracy. In addition, copy number alterations (CNAs) of INHBA and miR-217-5p downregulation are potential mechanisms for elevated INHBA expression in HNSC. In conclusion, INHBA may represent a promising predictive biomarker and candidate target for anti-TGFß therapy in HNSC.


Subject(s)
Biomarkers, Tumor , Head and Neck Neoplasms , Inhibin-beta Subunits , MicroRNAs , Biomarkers , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/genetics , Humans , MicroRNAs/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/therapeutic use , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...