Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 271(Pt 1): 132479, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38772474

ABSTRACT

To enable the sustainable production of ovalbumin (OVA) without relying on animal sources, the generally recognized as safe (GRAS) host Saccharomyces cerevisiae was used for the precision fermentation-based production of recombinant OVA. For this purpose, a signal peptide derived from EPX1, the most abundant extracellular protein produced by Pichia pastoris, was identified as a novel signal peptide for the efficient secretion of OVA in S. cerevisiae. To improve OVA secretion and cell growth, three helper proteins (PDI1, KAR2, and HAC1) present in the endoplasmic reticulum were expressed individually or in combination. Notably, the +P1/K2 strain coexpressing PDI1 and KAR2 with OVA produced 2 mg/L of OVA in the medium fraction; this value was 2.6-fold higher than the corresponding value for the control strain without helper proteins. Finally, a glucose-limited fed-batch fermentation process using the +P1/K2 strain yielded 132 mg/L of total OVA with 8 mg/L of extracellular OVA.


Subject(s)
Chickens , Fermentation , Ovalbumin , Saccharomyces cerevisiae , Ovalbumin/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Animals , Recombinant Proteins/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/metabolism , Saccharomycetales
2.
J Microbiol Biotechnol ; 32(11): 1471-1478, 2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36437520

ABSTRACT

2'-Fucosyllactose (2'-FL), the most abundant fucosylated oligosaccharide in human milk, has multiple beneficial effects on human health. However, its biosynthesis by metabolically engineered Escherichia coli is often hampered owing to the insolubility and instability of α-1,2-fucosyltransferase (the rate-limiting enzyme). In this study, we aimed to enhance 2'-FL production by increasing the expression of soluble α-1,2-fucosyltransferase from Helicobacter pylori (FucT2). Because structural information regarding FucT2 has not been unveiled, we decided to improve the expression of soluble FucT2 in E. coli via directed evolution using a protein solubility biosensor that links protein solubility to antimicrobial resistance. For such a system to be viable, the activity of kanamycin resistance protein (KanR) should be dependent on FucT2 solubility. KanR was fused to the C-terminus of mutant libraries of FucT2, which were generated using a combination of error-prone PCR and DNA shuffling. Notably, one round of the directed evolution process, which consisted of mutant library generation and selection based on kanamycin resistance, resulted in a significant increase in the expression level of soluble FucT2. As a result, a batch fermentation with the ΔL M15 pBCGW strain, expressing the FucT2 mutant (F#1-5) isolated from the first round of the directed evolution process, resulted in the production of 0.31 g/l 2'-FL with a yield of 0.22 g 2'-FL/g lactose, showing 1.72- and 1.51-fold increase in the titer and yield, respectively, compared to those of the control strain. The simple and powerful method developed in this study could be applied to enhance the solubility of other unstable enzymes.


Subject(s)
Escherichia coli , Fucosyltransferases , Humans , Fucosyltransferases/genetics , Kanamycin Resistance , Escherichia coli/genetics , Trisaccharides
SELECTION OF CITATIONS
SEARCH DETAIL
...