Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Langmuir ; 40(13): 7106-7113, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38498422

ABSTRACT

Amphiphilic rod-coil compounds have excellent photophysical properties and can be assembled into supramolecular nanostructures of different sizes in water or polar solvents. Herein, we synthesized the amphiphilic compounds 2N-DSA, 4N-DSA, and 6N-DSA with 9,10-distyrylanthracene (DSA) as the core and a naphthalene unit as the terminal group that connected DSA through a tetraethylene glycol chain. These compounds have excellent aggregation-induced emission (AIE) properties in aqueous solution and are assembled into worm-like fragments or different sizes of spherical assemblies, defending the volume ratio of the rod to coil segments. Notably, the donor-acceptor interaction between DSA and electron- deficient compounds 2,4,6-trinitrophenol (TNP), 2,4,5,7-tetranitrofluorenone (TNF), and tetraethylene glycol dinitrobenzoate (TGDNB) forms a charge transfer complex, which can be used as a nanoreactor to improve the yield of the Suzuki coupling reaction about 8-10 times. The experimental results reveal that the synergy effect of the donor-acceptor, intermolecular π-π stacking, and hydrophobic-hydrophilic interactions significantly influences the morphology of aggregates and the efficiency of the nanoreactor.

2.
Sensors (Basel) ; 24(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38475066

ABSTRACT

The field of fluorescence sensing, leveraging various supramolecular self-assembled architectures constructed from macrocyclic pillar[n]arenes, has seen significant advancement in recent decades. This review comprehensively discusses, for the first time, the recent innovations in the synthesis and self-assembly of pillar[n]arene-based supramolecular architectures (PSAs) containing metal coordination sites, along with their practical applications and prospects in fluorescence sensing. Integrating hydrophobic and electron-rich cavities of pillar[n]arenes into these supramolecular structures endows the entire system with self-assembly behavior and stimulus responsiveness. Employing the host-guest interaction strategy and complementary coordination forces, PSAs exhibiting both intelligent and controllable properties are successfully constructed. This provides a broad horizon for advancing fluorescence sensors capable of detecting environmental pollutants. This review aims to establish a solid foundation for the future development of fluorescence sensing applications utilizing PSAs. Additionally, current challenges and future perspectives in this field are discussed.

3.
Soft Matter ; 20(8): 1884-1891, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38321960

ABSTRACT

Self-assembly is one of the most important issues of fabricating materials with precise chiral nanostructures. Herein, we constructed a chiral assembly system from amphiphiles containing hydrophobic/hydrophilic chiral coils bonded to hexabiphenyl, exhibiting controllable enantioselectivity over various aggregation behaviors. The chiral coils aroused various steric hindrances affecting intrinsic stacking tendency and compactness, leading to different aggregating behaviors, as concluded from the self-assembly investigation. The strong π-π stacking interaction between the long hexabiphenyl groups gave rise to a relatively compact arrangement in the aqueous solution, whereas the methyl side groups on the coil segments raised steric hindrance at the rigid-flexible interface, resulting in loose stacking and formation of nanostructures with a larger curvature. Compared with the achiral molecule 1 that formed micron-sized large sheets, molecules 2-4 containing chiral coils aggregated into nanodishes, which looked exactly like mosquito-repellent incense, to overcome surface tension. The helical structures effectively amplified chirality and exhibited strong circular dichroism (CD) signals, which indicate enantioselectivity. In addition, the relatively loose packing behavior permitted their co-assembly with a dye and aided efficient energy transfer, providing a foundation for the chiral application of supramolecules. Thus, by introducing a simple methyl side group in amphiphilic molecules, asymmetric synthesis and energy transfer efficiency can be realized.

4.
Chem Commun (Camb) ; 59(98): 14544-14546, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-37987162

ABSTRACT

Despite the fact that effective photosensitizers (PSs) can be achieved through rational molecular design, controlling the hierarchical assemblies of individual PSs with distinct function and morphological nanoscopic architectures remains a challenge. Here, very ordered one-dimensional PS polymers and their hollow tubular structures are presented from aqueous assembly of organic PS-based di- or tri-blocked supramolecules. Di-blocked PSs were interdigitated into 1D fibrils, significantly quenching photooxidation. Meanwhile, tri-blocked PSs were tilted with respect to each other to generate hollow tubules, showing remarkable photo-activities as well as photo-stability, which are particularly suited for green chemistry due to their unusual rapid photo-oxidation.

5.
Soft Matter ; 19(35): 6683-6690, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37609871

ABSTRACT

A series of coil-rod-coil molecules containing a 9,10-distyrylanthracene (DSA) core was successfully synthesized. The flexible parts of these molecules are composed of different polyethylene oxide chains. These molecules with aggregation-induced luminescence properties can be assembled into micelles, spheres, and sheet-like nano-assemblies in aqueous solution and have a strong ability to form charge-transfer complexes with the electron-deficient small molecules 2,4,5,7-tetranitro-9-fluorenone and 2,4,6-trinitrophenol. Interestingly, under ultraviolet light irradiation, the DSA structure undergoes photolysis and induces the disappearance of the aggregation-induced luminescence phenomena, giving these molecules application potential as a photodegradable material. In addition, these molecules are suitable organic dyes for information encryption and anti-counterfeiting applications.

6.
Langmuir ; 39(25): 8824-8832, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37294904

ABSTRACT

In the context of sustainable development, research regarding chirality has aroused enormous attention. Concurrently, chiral self-assembly is one of the most important subjects in supramolecular research, which can broaden the applications of chiral materials. This study focuses on the morphology control of amphiphilic rod-coil molecules composed of the rigid hexaphenyl unit and flexible oligoethylene and butoxy groups containing lateral methyl groups, carried out using an enantioseparation application. The methyl side chain being located on different blocks influences the driving force through steric hindrance, which determines the direction and degree of tilted packing during the π-π stacking of the self-assembly process. Interestingly, the amphiphilic rod-coil molecules aggregated into long helical nano-fibers, which further hierarchically aggregated into nano-sheets or nano-tubes upon increasing the concentration of the THF/H2O solution. In particular, the hierarchical-chiral assembly effectively amplified the chirality and was validated by the strong Cotton signals; playing a vital role in the enantioselective nucleophilic substitution reaction. These results provide new insights into the applications of chiral self-assemblies and soft chiral materials.

7.
Nat Commun ; 14(1): 2503, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37130853

ABSTRACT

Photosensitizers (PSs) with nano- or micro-sized pore provide a great promise in the conversion of light energy into chemical fuel due to the excellent promotion for transporting singlet oxygen (1O2) into active sites. Despite such hollow PSs can be achieved by introducing molecular-level PSs into porous skeleton, however, the catalytic efficiency is far away from imagination because of the problems with pore deformation and blocking. Here, very ordered porous PSs with excellent 1O2 generation are presented from cross-linking of hierarchical porous laminates originated by co-assembly of hydrogen donative PSs and functionalized acceptor. The catalytic performance strongly depends on the preformed porous architectures, which is regulated by special recognition of hydrogen binding. As the increasing of hydrogen acceptor quantities, 2D-organized PSs laminates gradually transform into uniformly perforated porous layers with highly dispersed molecular PSs. The premature termination by porous assembly endows superior activity as well as specific selectivity for the photo-oxidative degradation, which contributes to efficient purification in aryl-bromination without any postprocessing.

8.
Soft Matter ; 19(8): 1540-1548, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36745471

ABSTRACT

Stimuli-responsive assembly deformation is a key feature in constructing smart soft materials, which makes them versatile and autonomous. In this study, rod-coil amphiphilic compounds containing spiropyran (SP) groups were developed and synthesized to investigate their stimuli-responsive assembly in a solution system with 99% water content. In addition to photochromic phenomena, reversible light-mediated morphological alterations occurred in these molecular aggregates. Based on the different flexible chain segments of rod-coil amphiphiles, the initial assemblies underwent a dissociation-reassembly process under ultraviolet (UV) irradiation, whereupon they deformed or disassembled to assemblies. Furthermore, as the UV source was removed, the original nanostructures were gradually recovered again via the ring-closing reaction process. These compounds, interestingly, can selectively combine with copper ions to produce cross-linked co-assembled nanostructures. The copper ion complex solution of rod-coil amphiphilic compounds emitted unique bright blue fluorescence, which allowed for the specific visual identification of copper ions in aqueous solutions.

9.
Nanoscale ; 15(9): 4282-4290, 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36762519

ABSTRACT

Macrocyclic molecules have attracted considerable attention as new functional materials owing to their unique pore size structure and excellent host-guest properties. With the development of macrocyclic compounds, the properties of mono-modified macrocyclic materials can be improved by incorporating pillar[n]arene or cyclodextrin derivatives through bridge bonds. Herein, we report the self-assembly of amphiphilic di-macrocyclic host molecules (H1-2) based on ß-cyclodextrin and pillar[5]arene units linked by azophenyl or biphenyl groups. In a H2O/DMSO (19 : 1, v/v) mixed polar solvent, an amphiphile H1 with an azophenyl group self-assembled into unique nanorings and exhibited an obvious photoresponsive colour change. This photochromic behaviour makes H1 suitable for application in carbon paper materials on which arbitrary patterns can be erased and rewritten. The amphiphile H2, with a biphenyl unit, self-assembled into spherical micelles. These differences indicate that various linker units lead to changes in the intermolecular and hydrophilic-hydrophobic interactions. In a CHCl3/DMSO (19 : 1, v/v) mixed low-polarity solvent, the amphiphile H1 self-assembled into fibrous aggregates, whereas the molecule H2 assembled into unique nanoring aggregates. In this CHCl3/DMSO mixed solvent system, small nanosheet aggregates were formed by the addition of a guest molecule (G) composed of tetraphenylethene and hexanenitrile groups. With prolonged aggregation time, the small sheet aggregates further aggregated into cross-linked nanoribbons and eventually formed large nanosheet aggregates. The data reveal that the morphology of H1-2 can be controlled by tuning the intermolecular interactions of the molecules via the formation of host-guest complexes. Moreover, the polyhydroxy cyclodextrin unit on H1-2 can be strongly adsorbed on the stationary phase in column chromatography via multiple hydrogen bonds, and the singly modified pillar[5]arenes can be successfully separated by host-guest interactions.

10.
Polymers (Basel) ; 15(23)2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38231964

ABSTRACT

Supramolecular chemistry enables the manipulation of functional components on a molecular scale, facilitating a "bottom-up" approach to govern the sizes and structures of supramolecular materials. Using dynamic non-covalent interactions, supramolecular polymers can create materials with reversible and degradable characteristics and the abilities to self-heal and respond to external stimuli. Pillar[n]arene represents a novel class of macrocyclic hosts, emerging after cyclodextrins, crown ethers, calixarenes, and cucurbiturils. Its significance lies in its distinctive structure, comparing an electron-rich cavity and two finely adjustable rims, which has sparked considerable interest. Furthermore, the straightforward synthesis, uncomplicated functionalization, and remarkable properties of pillar[n]arene based on supramolecular interactions make it an excellent candidate for material construction, particularly in generating interpenetrating supramolecular polymers. Polymers resulting from supramolecular interactions involving pillar[n]arene find potential in various applications, including fluorescence sensors, substance adsorption and separation, catalysis, light-harvesting systems, artificial nanochannels, and drug delivery. In this context, we provide an overview of these recent frontier research fields in the use of pillar[n]arene-based supramolecular polymers, which serves as a source of inspiration for the creation of innovative functional polymer materials derived from pillar[n]arene derivatives.

11.
Front Chem ; 10: 920430, 2022.
Article in English | MEDLINE | ID: mdl-35685347

ABSTRACT

With the rapid evolution of wearable electronics, the demand for flexible energy storage devices is gradually increasing. At present, the commonly used energy storage devices in life are based on rigid frames, which may lead to failure or explosion when mechanical deformation occurs. The main reason for this phenomenon is the insufficient elastic limit of the metal foil current collector with a simple plane structure inside the electrodes. Obviously, the design and introduction of innovative structural materials in current collectors is the key point to solving this problem. Several recent studies have shown that metal nanowires can be used as novel current collector materials to fabricate flexible energy storage devices. Herein, we review the applications of metal nanowires in the field of flexible energy storage devices by selecting the three most representative metals (Au, Ag, and Cu). By the analysis of the various typical literature, the advantages and disadvantages of these three metal nanowires (Au, Ag, and Cu) are discussed respectively. Finally, we look forward to the development direction of one-dimensional (1D) metal nanowires in flexible energy storage devices and show the personal opinions with a reference value, hoping to provide the experience and ideas for related research in the future.

12.
Dalton Trans ; 50(33): 11535-11541, 2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34350926

ABSTRACT

Two tetra-nuclear YbIII-incorporated selenotungstate clusters, Keggin (C2H8N)6Na14[Yb4Se6W44O160(H2O)12]·40H2O (1) and Wells-Dawson (C2H8N)4Na14[Yb4Se6W45O159(OH)6(H2O)11]·38H2O (2), have been isolated through a pH-controlled assembly, which exhibit the first YbIII-containing polyoxotungstates with selenium heteroatoms. Their assemblies rely on the structure-directing effects of SeO32- anion templates to give rise to available Se-containing Keggin-/Wells-Dawson-type motifs. Both compounds were characterized by single-crystal X-ray diffraction, IR spectroscopy, power X-ray diffraction (XRD), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) as well as electrospray ionization mass spectrometry (ESI-MS). Furthermore, systematic magnetic studies revealed that 1 exhibits field-induced single-molecule magnetic behavior with a pre-exponential factor of τ0 = 6.60(7) × 10-8 s and a relaxation energy barrier of ΔE/kB = 39.44(2) K, while 2 only displays antiferromagnetic interactions between the ytterbium centers.

13.
Soft Matter ; 17(27): 6661-6668, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34160543

ABSTRACT

The aggregation-induced emission (AIE) effect is an important feature for luminescence studies, which can offer a broader range of applications for fluorescent materials. Herein, we report the morphological control and photoproperties of amphipathic propeller-shaped rod-coil molecules based on a benzene-1,3,5-tricarboxamide (BTA) unit, which restricts the intramolecular rotation and leads to the AIE effect during the self-assembly process. Investigations on the assembly of these molecules have revealed that tetragonal perforated lamella, hexagonal columnar, body-centered tetragonal micellar, and hexagonal close-packed nanostructures were spontaneously formed in the solid-state. In the solution-state, these molecules assemble into nanosheet-like aggregates, bowl-like objects, and spherical nanoparticles, respectively. The morphology of the molecular aggregates can be controlled by modifying the molecular chain length or introducing lateral methyl groups in the coil chain. Notably, these molecular assemblies exhibit strong AIE phenomena in a mixed THF/H2O solution and can be used as smart soft materials due to the restriction of their intramolecular motion.

14.
Molecules ; 26(7)2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33805241

ABSTRACT

The efficiency roll-off and operational lifetime of organic light-emitting diodes (OLEDs) with a tetradentate Pt(II) emitter is improved by engaging an n-doped electron-transporting layer (ETL). Compared to those devices with non-doped ETL, the driving voltage is lowered, the charged carrier is balanced, and the exciton density in the emissive layer (EML) is decreased in the device with n-doped ETL with 8-hydroxyquinolinolatolithium (Liq). High luminance of almost 70,000 cd m-2 and high current efficiency of 40.5 cd A-1 at high luminance of 10,000 cd m-2 is achieved in the device with 50 wt%-Liq-doped ETL. More importantly, the extended operational lifetime of 1945 h is recorded at the initial luminance of 1000 cd m-2 in the 50 wt%-Liq-doped device, which is longer than that of the device with non-doped ETL by almost 10 times. This result manifests the potential application of tetradentate Pt(II) complexes in the OLED industry.

15.
Langmuir ; 37(3): 1215-1224, 2021 01 26.
Article in English | MEDLINE | ID: mdl-33426895

ABSTRACT

Self-assembled nanomaterials composed of amphiphilic oligomers with functional groups have been applied in the fields of biomimetic chemistry and on-demand delivery systems. Herein, we report the assembly behavior and unique properties of an emergent n-shaped rod-coil molecule containing an azobenzene (AZO) group upon application of an external stimulus (thermal, UV light). The n-shaped amphiphilic molecules comprising an aromatic segment based on anthracene, phenyl linked with azobenzene groups, and hydrophilic oligoether (chiral) segments self-assemble into large strip-like sheets and perforated-nanocage fragments in an aqueous environment, depending on the flexible oligoether chains. Interestingly, the nano-objects formed in aqueous solution undergo a morphological transition from sheets and nanocages to small one-dimensional nanofibers. These molecules exhibit reversible photo- and thermal-responsiveness, accompanied by a change in the supramolecular chirality caused by the conformational transitions of the rod backbone. The architecture of n-shaped amphiphilic molecules with a photosensitive group makes them ideal candidates for intelligent materials for applications in advanced materials science.

16.
Phys Chem Chem Phys ; 23(3): 2186-2192, 2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33438686

ABSTRACT

Subtle changes in molecular structure often lead to significant differences in host-guest interactions, which result in different host-guest recognition capabilities and dynamics behaviours in complex formation. Herein, we reveal the influence of the guest substituents on host-guest molecular recognition by molecular dynamics (MD) simulation and density functional theory (DFT) approaches. The results suggest that the binding energy barrier of acyclic cucurbit[4]uril (ACB[4]) with opiate metabolites gradually decreases. The methyl group in morphine (MOR) and morphine-3-glucuronide (M3G) strengthens the hydrophobicity of the guest, while depressing the energy loss of the desolvation of polar groups (e.g. hydroxyl) inside the ACB[4] cavity. However, in M3G, the 3-glucuronide group located outside the ACB[4] host cavity effectively alleviates the unfavourable desolvation effect of the hydroxyl and increases the binding constant by two orders of magnitude (compared with normorphine (NMOR)). Our findings stressed the essentiality of the binding mode and intermolecular noncovalent interactions in the host-guest selective binding ability.


Subject(s)
Bridged-Ring Compounds/chemistry , Imidazoles/chemistry , Morphine Derivatives/chemistry , Morphine/chemistry , Density Functional Theory , Hydrogen Bonding , Models, Chemical , Molecular Dynamics Simulation
17.
RSC Adv ; 11(44): 27453-27460, 2021 Aug 09.
Article in English | MEDLINE | ID: mdl-35480669

ABSTRACT

The oxidative desulfurization (ODS) of organic sulfur compounds over tungsten oxide supported on highly ordered mesoporous SnO2 (WO x /meso-SnO2) was investigated. A series of WO x /meso-SnO2 with WO x contents from 10 wt% to 30 wt%, were prepared by conventional wet impregnation. The physico-chemical properties of the WO x /meso-SnO2 catalysts were characterized by X-ray diffraction (XRD), N2 adsorption-desorption isotherms, electron microscopy, Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, and the temperature-programmed reduction of hydrogen (H2-TPR). The characterization results indicated that these catalysts possessed mesoporous structures with uniform pores, high specific surface areas, and well-dispersed polyoxotungstate species on the surface of meso-SnO2 support. The ODS performances were evaluated in a biphasic system (model oil/acetonitrile, S initial = 2000 ppm), using H2O2 as an oxidant, and acetonitrile as an extractant. Dibenzothiophene (DBT) in the model oil was removed completely within 60 min at 50 °C using 20 wt% WO x /meso-SnO2 catalyst. Additionally, the effect of reaction temperature, H2O2/DBT molar ratio, amount of catalyst and different sulfur-containing substrates on the catalytic performances were also investigated in detail. More importantly, the 20 wt% WO x /meso-SnO2 catalyst exhibited 100% surfur-removal efficiency without any regeneration process, even after six times recycling.

18.
Soft Matter ; 16(9): 2224-2229, 2020 Mar 04.
Article in English | MEDLINE | ID: mdl-32055815

ABSTRACT

Controlling the morphology of rod-coil molecular aggregates is crucial for studying and obtaining functional materials with exceptional properties. In this paper, we report the construction of rod-coil molecular nanoaggregates with well-defined structures. The rod-coil molecules, labeled 1a-1d, consist of a rod section, composed of phenyl and biphenyl groups, and oligoether chains with 7 and 12 repeating units. The final assembled structures showed either oblique or hexagonal columnar structures, depending on the length of the coils in the bulk state. Interestingly, in water, molecules 1a and 1c self-assemble into scrolled nanofibers and cylindrical micelles. Instead, molecules 1b and 1d, which have methyl groups decorated at the interface of the rod and coil sections, self-organize into helical nanofibers and nanorings, respectively. Thus, controlling the length of the coil chains and inserting lateral methyl groups is an effective strategy to construct precise rod-coil molecular assemblies in the bulk and in aqueous solution.

19.
Soft Matter ; 15(33): 6718-6724, 2019 Aug 21.
Article in English | MEDLINE | ID: mdl-31389465

ABSTRACT

Coil-rod-coil molecules, composed of flexible oligoether chains and conjugated rod blocks, have a well-known ability to produce various nanostructures in bulk and in aqueous solution. Herein we report the synthesis and self-assembly of coil-rod-coil molecules based on the sequence of the rod building block and the type of oligoether coil chain. These molecules consist of conjugated rod segments, which are composed of biphenyl, terphenyl, and acetylenic bonds, with chiral oligoether chains as flexible coil segments. The experimental results imply that the sequence of the rod segments markedly influences the self-assembled nanostructures of coil-rod-coil molecules in the bulk state, and that the type of coil chain strongly affects the morphology of the supramolecular nanoassemblies of these molecules in aqueous solution. In the bulk state, molecules 1a and 1b, which contain biphenyl units connected to the end of the coil segments self-organize into a hexagonal perforated lamellar phase, and oblique columnar and body-centred tetragonal structures, respectively. However, molecules 2a and 2b bearing terphenyl units linked to the end of the coil segments self-assemble into lamellar, hexagonal perforated lamellar and hexagonal columnar structures. In aqueous solution, rod-coil molecular isomers with linear chiral oligoether chains self-assemble into helical nanofibres of various lengths. Meanwhile, isomers with chiral oligoether dendron chains self-organize into sheet-like nanoribbons of different sizes.

20.
Nanoscale ; 10(37): 17540-17545, 2018 Sep 27.
Article in English | MEDLINE | ID: mdl-30215088

ABSTRACT

DNA strands have been recently found to play a role in crystallizing organic semiconductors as a substitute for conventional surfactants. Such DNA-guided organic semiconductor particles possessed the recognition ability to complementary target DNAs, resulting in "enhanced luminescence" due to the lesser degree of non-radiative dissipation. Apart from this, in this study we developed selective recognition of mercury ions by utilizing DNA probes having ion-specific thymine-rich motifs. Strikingly, the specific ion-DNA interaction triggered rather distinctive "depressed luminescence" emitting from the particles. The mercury ions were found to be present both at the surface and the inner regions, which were discovered to relate to the drastic morphological distortion of the particles as evidenced by elemental, electron microscopy, and confocal fluorescence microscopy analyses. This novel phenomenon discovered would expand the technological values of organic semiconductors conjugated with oligonucleotides toward a wider range of target-specific applications.


Subject(s)
DNA Probes , Mercury/analysis , Oligonucleotides/chemistry , Semiconductors , Thymine/chemistry , DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...