Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PNAS Nexus ; 1(5): pgac259, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36712380

ABSTRACT

Aggregated α-synuclein (α-syn) accumulates in the neuronal Lewy body (LB) inclusions in Parkinson's disease (PD) and LB dementia. Yet, under nonpathological conditions, monomeric α-syn is hypothesized to exist in an equilibrium between disordered cytosolic- and partially α-helical lipid-bound states: a feature presumably important in synaptic vesicle release machinery. The exact underlying role of α-syn in these processes, and the mechanisms regulating membrane-binding of α-syn remains poorly understood. Herein we demonstrate that Protein kinase R (PKR) can phosphorylate α-syn at several Ser/Thr residues located in the membrane-binding region that is essential for α-syn's vesicle-interactions. α-Syn phosphorylated by PKR or α-syn isolated from PKR overexpressing cells, exhibit decreased binding to lipid membranes. Phosphorylation of Thr64 and Thr72 appears as the major contributor to this effect, as the phosphomimetic Thr64Glu/Thr72Glu-α-syn mutant displays reduced overall attachment to brain vesicles due to a decrease in vesicle-affinity of the last two thirds of α-syn's membrane binding region. This allows enhancement of the "double-anchor" vesicle-binding mechanism that tethers two vesicles and thus promote the clustering of presynaptic vesicles in vitro. Furthermore, phosphomimetic Thr64Glu/Thr72Glu-α-syn inhibits α-syn oligomerization and completely abolishes nucleation, elongation, and seeding of α-syn fibrillation in vitro and in cells, and prevents trans-synaptic spreading of aggregated α-syn pathology in organotypic hippocampal slice cultures. Overall, our findings demonstrate that normal and abnormal functions of α-syn, like membrane-binding, synaptic vesicle clustering and aggregation can be regulated by phosphorylation, e.g., via PKR. Mechanisms that could potentially be modulated for the benefit of patients suffering from α-syn aggregate-related diseases.

2.
J Neurochem ; 151(4): 397-416, 2019 11.
Article in English | MEDLINE | ID: mdl-30474862

ABSTRACT

Accurate, reliable, and objective biomarkers for Alzheimer's disease (AD), Parkinson's disease (PD), and related age-associated neurodegenerative disorders are urgently needed to assist in both diagnosis, particularly at early stages, and monitoring of disease progression. Technological advancements in protein detection platforms over the last few decades have resulted in a plethora of reported molecular biomarker candidates for both AD and PD; however, very few of these candidates are developed beyond the discovery phase of the biomarker development pipeline, a reflection of the current bottleneck within the field. In this review, the expanded use of selected reaction monitoring (SRM) targeted mass spectrometry will be discussed in detail as a platform for systematic verification of large panels of protein biomarker candidates prior to costly validation testing. We also advocate for the coupling of discovery-based proteomics with modern targeted MS-based approaches (e.g., SRM) within a single study in future workflows to expedite biomarker development and validation for AD and PD. It is our hope that improving the efficiency within the biomarker development process by use of an SRM pipeline may ultimately hasten the development of biomarkers that both decrease misdiagnosis of AD and PD and ultimately lead to detection at early stages of disease and objective assessment of disease progression. This article is part of the special issue "Proteomics".


Subject(s)
Alzheimer Disease/diagnosis , Alzheimer Disease/metabolism , Mass Spectrometry/methods , Parkinson Disease/diagnosis , Parkinson Disease/metabolism , Proteomics/methods , Biomarkers/metabolism , Humans , Sensitivity and Specificity
3.
J Proteome Res ; 16(11): 4073-4085, 2017 11 03.
Article in English | MEDLINE | ID: mdl-28927269

ABSTRACT

The proteins in an MCF-7 cell line were probed for tamoxifen (TAM) and n-desmethyl tamoxifen (NDT) induced stability changes using the Stability of Proteins from Rates of Oxidation (SPROX) technique in combination with two different quantitative proteomics strategies, including one based on SILAC and one based on isobaric mass tags. Over 1000 proteins were assayed for TAM- and NDT-induced protein stability changes, and a total of 163 and 200 protein hits were identified in the TAM and NDT studies, respectively. A subset of 27 high-confidence protein hits were reproducibly identified with both proteomics strategies and/or with multiple peptide probes. One-third of the high-confidence hits have previously established experimental links to the estrogen receptor, and nearly all of the high-confidence hits have established links to breast cancer. One high-confidence protein hit that has known estrogen receptor binding properties, Y-box binding protein 1 (YBX1), was further validated as a direct binding target of TAM using both the SPROX and pulse proteolysis techniques. Proteins with TAM- and/or NDT-induced expression level changes were also identified in the SILAC-SPROX experiments. These proteins with expression level changes included only a small fraction of those with TAM- and/or NDT-induced stability changes.


Subject(s)
Protein Folding/drug effects , Protein Stability/drug effects , Proteome/drug effects , Tamoxifen/pharmacology , Breast Neoplasms/chemistry , Female , Humans , MCF-7 Cells , Molecular Targeted Therapy , Proteomics/methods , Receptors, Estrogen/metabolism , Tamoxifen/analogs & derivatives , Tamoxifen/therapeutic use , Y-Box-Binding Protein 1/metabolism
4.
Anal Chem ; 88(22): 10987-10993, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27740755

ABSTRACT

The characterization of protein folding stability changes on the proteomic scale is useful for protein-target discovery and for the characterization of biological states. The Stability of Proteins from Rates of Oxidation (SPROX) technique is one of several mass spectrometry-based techniques recently established for the making proteome-wide measurements of protein folding and stability. A critical part of proteome-wide applications of SPROX is the identification and quantitation of methionine-containing peptides. Demonstrated here is a targeted mass spectrometry-based proteomics strategy for the detection and quantitation of methionine-containing peptides in SPROX experiments. The strategy involves the use of phenacyl bromide (PAB) for the targeted detection and quantitation of methionine-containing peptides in SPROX using selective reaction monitoring (SRM) on a triple quadrupole mass spectrometer (QQQ-MS). As proof-of-principle, the known binding interaction of Cyclosporine A with cyclophilin A protein in a yeast cell lysate is successfully detected and quantified using a targeted SRM workflow. Advantages of the described workflow over other SPROX protocols include a 20-fold reduction in the amount of total protein needed for analysis and the ability to work with the endogenous proteins in a given sample (e.g., stabile isotope labeling with amino acids in cell culture is not necessary).


Subject(s)
Acetophenones/chemistry , Ligands , Mass Spectrometry , Proteins/chemistry , Binding Sites , Oxidation-Reduction , Peptides/chemistry , Protein Folding
SELECTION OF CITATIONS
SEARCH DETAIL
...