Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phytomedicine ; 104: 154307, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35841664

ABSTRACT

PURPOSE: The high density of tumor-associated macrophages (TAMs) and inflammatory factors are crucial elements leading to tumor immune tolerance. Previously, we found that total glucosides of paeony (TGP) have strong inhibitory effects on the release of various inflammatory factors; however, it is unclear whether the inhibitory effects can improve the inflammatory microenvironment of tumors. Therefore, in the present study, we investigated the mechanism via which TGP depresses tumor growth and metastasis via modulation of TAM infiltration in breast cancer. METHODS: We assessed the effects of TGP on various mouse models of tumor. Lung metastasis was detected using hematoxylin and eosin staining. T cell (CD3+CD4+ and CD3+CD8+) effector and memory subsets, and TAM (CD45+CD11b+F4/80+) populations in the tumor microenvironment (TME) were examined using flow cytometry. Lipopolysaccharide (LPS)-stimulated macrophage experiments were used to investigate the TGP anti-inflammatory effects in vitro. Furthermore, conditional medium (CM) was added to detect 4T1 breast cancer cell growth using a Real-Time Cell Analyzer (RTCA) xCELLigence system. Inflammatory cytokine and chemokine levels were measured using cytometric bead array (CBA) kits and quantitative polymerase chain reaction (qPCR). NF-κB expression in the nucleus was examined by immunofluorescence and Western blot analysis. RESULTS: TGP suppressed tumor growth and lung metastasis, decreased CD45+CD11b+F4/80+ (TAMs) population obviously, and increased CD44LowCD62LHi (T memory stem cells) and CD44HiCD62LHi (central memory cells) populations in the tumor-infiltrating CD4+ and CD8+ T cells. In addition, TGP reduced inflammatory factor levels in tumors, thus inhibiting the infiltration of TAMs to improve the inflammation immunosuppressive microenvironment. In the in vitro experiment, TGP inhibited IL-10 and C-C Motif Chemokine Ligand 2 (CCL2) secretion and mRNA expression in LPS-stimulated macrophages to inhibit 4T1 cell growth and restrain macrophages M2 polarization. In addition, TGP can directly inhibit 4T1 cell proliferation by restraining autocrine CCL2 and IL-10. Further mechanistic studies reavealed that TGP inhibited CCL2 secretion by inhibiting NF-κB accumulation in the nucleus in macrophages. CONCLUSION: TGP reduced TAM recruitment mainly through the NF-κB/CCL2 signaling pathway, thereby promoting T cell infiltration in the TME. TGP has a unique advantage in balancing the inflammatory response. Furthermore, our results present novel insights on the mechanisms underlying TAM infiltration that were inhibited by TGP, with potential application in development of novel therapies targeting CCL2 pathways.


Subject(s)
Lung Neoplasms , Paeonia , Animals , CD8-Positive T-Lymphocytes/metabolism , Chemokine CCL2 , Glucosides/pharmacology , Interleukin-10 , Ligands , Lipopolysaccharides , Lung Neoplasms/drug therapy , Mice , NF-kappa B/metabolism , Tumor Microenvironment , Tumor-Associated Macrophages
2.
Biomed Pharmacother ; 142: 111885, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34385104

ABSTRACT

Cordyceps sinensis, including Hirsutella sinensis, is a highly valuable traditional Chinese medicine and is used to treat patients with pulmonary heart disease in clinical practice. However, the underlying mechanisms of its effects remain unclear. In this study, a mouse model of heart failure established by non-thoracic, transverse aortic constriction (TAC) was developed to determine the underlying mechanisms of therapeutic effects of Hirsutella sinensis fungus (HSF) powder. The results showed that HSF treatment remarkably ameliorated myocardial hypertrophy, collagen fiber hyperplasia, and cardiac function in mice with heart failure. Using transcriptional and epigenetic analyses, we found that the mechanism of HSF mainly involved a variety of signaling pathways related to myocardial fibrosis and determined that HSF could reduce the levels of TGF-ß1 proteins in heart tissue, as well as type I and III collagen levels. These data suggest that HSF alleviates heart failure, inhibits irreversible ventricular remodeling, and improves cardiac function through the regulation of myocardial fibrosis-related signaling pathways, which can provide novel opportunities to improve heart failure therapy.


Subject(s)
Cardiotonic Agents/pharmacology , Cordyceps/chemistry , Heart Failure/drug therapy , Plant Preparations/pharmacology , Animals , Aorta, Thoracic/diagnostic imaging , Aorta, Thoracic/surgery , Cardiomegaly/drug therapy , Cardiomegaly/metabolism , Cardiomegaly/pathology , Cardiotonic Agents/therapeutic use , Constriction, Pathologic/complications , Disease Models, Animal , Extracellular Matrix/metabolism , Fibrosis/drug therapy , Fibrosis/genetics , Fibrosis/metabolism , Gene Expression Regulation/drug effects , Heart Failure/etiology , Heart Failure/metabolism , Heart Failure/pathology , Heart Ventricles/drug effects , Heart Ventricles/pathology , Ligation , Male , Mice, Inbred C57BL , Plant Preparations/therapeutic use , Signal Transduction/drug effects
3.
Front Nutr ; 7: 585306, 2020.
Article in English | MEDLINE | ID: mdl-33304918

ABSTRACT

It has been reported that diet and nutrition play important roles in the occurrence and development of hepatocellular carcinoma (HCC). In this study, we investigated the potential tumor-promoting mechanisms of a high-fat diet (HFD) in mice with dietondiethylnitrosamine (DEN)-induced hepatocarcinogenesis. HFD significantly decreased the survival rate and induced severe liver dysfunction in DEN-induced mice, as indicated by increased serum glutamic-pyruvic transaminase (ALT), glutamic oxalacetic transaminase (AST), and alkaline phosphatase (ALP) levels and increased liver index, liver nodule count, and γ-glutamyltransferase (γ-GT) activity. Moreover, an increased number of fat droplets and HCCs were found in the livers of the HFD mice, who displayed little collagen in and around the liver cancer groove and the infiltration of large number of inflammatory cells, such as macrophages, compared with the control mice. HFD also significantly increased proliferating cell nuclear antigen (PCNA), nuclear factor-κB (NF-κB), cyclin D1, tumor necrosis factor (TNF), and interleukin-1 (IL-1) expression levels in the liver. In vitro, we found that the inducible nitric oxide synthase (iNOS) percentage increased in macrophages after palmitic acid treatment, as well as the secretion of inflammatory factors and cytokines such as interleukin-6(IL-6), interleukin-10(IL-10), CCL2, Interferon γ (IFN-γ), and TNF. Thus, our results demonstrate that an HFD may promote DEN-induced hepatocarcinogenesis in mice by destroying liver function and enhancing the inflammatory response by recruiting and polarizing macrophages in the liver. This study could therefore provide new insights into the tumor promoting effects of an HFD in HCC.

4.
Mediators Inflamm ; 2020: 5270508, 2020.
Article in English | MEDLINE | ID: mdl-33132755

ABSTRACT

Radix Aconiti Lateralis Preparata (Fuzi) is a traditional Chinese medicine. Its alkaloids are both cardiotonic and cardiotoxic; however, the underlying mechanisms are unclear. Compatibility testing and processing are the primary approaches used to reduce the toxicity of aconite preparations. The purpose of this study was to compare the effects of crude Fuzi (CFZ), CFZ combined with Glycyrrhiza (Gancao) (CFZ+GC), and prepared materials of CFZ (PFZ) on heart failure (HF) in C57BL/6J mice and explore the potential mechanisms of action of CFZ. Transverse aortic constriction (TAC) was used to generate the HF state, and CFZ (1.5 g·mL-1), PFZ (1.5 g·mL-1), or CFZ+GC (1.8 g·mL-1) was orally administered to the HF-induced mice daily. For the subsequent 8 weeks, hemodynamic indicators, ventricular pressure indices, and mass indices were evaluated, and histopathological imaging was performed. CFZ, CFZ+GC, and PFZ significantly improved left ventricular function and structure and reduced myocardial damage. CFZ+GC was more effective than CFZ and PFZ, whereas CFZ had higher toxicity than CFZ+GC and PFZ. CFZ and CFZ+GC attenuated ischemia-induced inflammatory responses and also inhibited Toll-like receptor-4 (TLR4) and nuclear factor kappa beta (NF-κB) action in the heart. Moreover, mass spectrometry analysis revealed a decrease in the levels of toxic components of CFZ+GC, whereas those of the protective components were increased. This study suggested that GC reduces the toxicity and increases the efficacy of CFZ on HF induced by TAC. Furthermore, GC+CFZ reduces the risk of HF by ameliorating the inflammation response, which might be partially related to the inhibition of the TLR4/NF-κB pathway.


Subject(s)
Aconitum/chemistry , Glycyrrhiza/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Hemodynamics/drug effects , Inflammation/drug therapy , Mass Spectrometry , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/metabolism , Ventricular Remodeling
5.
Article in English | MEDLINE | ID: mdl-32565866

ABSTRACT

Kidney-yang deficiency syndrome (KYDS) is a classic syndrome in traditional Chinese medicine, which is mainly caused by damage to the hypothalamic-pituitary-adrenal (HPA) axis. Hirsutella sinensis fungus (HSF), an artificial substitute of Cordyceps sinensis, has been widely used in TCM. However, the effects and the possible mechanism of HSF on the HPA axis and corresponding KYDS have not yet been investigated. In this study, Lewis rats were used as a spontaneous KYDS model. HSF was intragastrically administered to the Lewis rats at two doses: low dose (1 g/kg) and high dose (2 g/kg). Body weight, temperature, and behavioral tests including grip strength, open field, and Morris water maze (MWM) tests were used to evaluate the KYDS symptoms. Enzyme-linked immunosorbent assay was used to detect the level of circulating adrenocortisol (ACTH), corticosterone (CORT), corticotropin releasing hormone (CRH), cyclic adenosine monophosphate (cAMP), and cyclic guanosine monophosphate (cGMP). In addition, mRNA expression of tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), interleukin 10 (IL-10), CRH, glucocorticoid receptor (GR), and mineralocorticoid receptor (MR) was detected by quantitative real-time polymerase chain reaction (Q-PCR). The Lewis rats were indicated to have KYDS symptoms and HSF treatment ameliorated these symptoms via enhancement of the HPA axis function, which was evidenced by the increased levels of CRH, ACTH, and CORT in serum and 17-OHCS in urine. HSF also significantly improved the expression of TNF-α, IFN-γ, and IL-2, secreted by Th1 cells, which might accelerate the activation of the immune system related to the HPA axis function. Thus, we conclude that HSF can alleviate KYDS symptoms in Lewis rats by regulating the HPA axis through accelerated immune system activation.

6.
Front Pharmacol ; 11: 612620, 2020.
Article in English | MEDLINE | ID: mdl-33488388

ABSTRACT

Background: Targeting exhausted T (Tex) cells is a promising strategy for anti-tumour treatment. Previously, we demonstrated that Hirsutella sinensis fungus (HSF) could significantly increase T cell infiltration and the effector T cell ratio in the tumor microenvironment, activating systemic immune responses. However, we do not know how HSF regulates Tex cells in the tumor microenvironment. Here, we explored the mechanism underlying HSF inhibition of Tex cells and tumor growth and metastasis in breast cancer. Methods: We examined the effects of HSF on various tumor mouse models using in vivo imaging technology. Lung metastasis was detected by H&E staining and the T cell subsets in the tumor microenvironment were assayed with flow cytometry. The in vitro proliferation, function and apoptosis of CD8+ T cells were measured, as well as the T-bet and PD-1 mRNA expressions. Results: HSF inhibited tumor growth and lung metastasis in the mice, and had significantly higher CD44LowCD62LHi and CD44HiCD62LLowpopulations in the tumour-infiltrating CD8+ T cells. However, HSF significantly reduced levels of inhibitory receptors, such as PD-1, TIGIT, CTLA-4, and regulatory T cells. In vitro, HSF inhibited the CD8+ T cell apoptosis rate, and promoted CD8+ T cell proliferation and secretion of interferon (IFN)-γ and granzyme B. Furthermore, HSF treatment both in vivo and in vitro significantly increased Eomes expression, while decreasing T-bet expression. Conclusion: HSF exerted anti-tumour effects mainly through the immune system, by promoting effector/memory T cells and reducing Tex cell production in the tumor microenvironment. The specific mechanisms involved inhibiting T-bet and promoting Eomes to decrease the expression of immune inhibitor receptors and enhance the T cell function, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...