Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 266
Filter
1.
Front Immunol ; 15: 1373656, 2024.
Article in English | MEDLINE | ID: mdl-38742108

ABSTRACT

African swine fever virus (ASFV) is one of the most complex viruses. ASFV is a serious threat to the global swine industry because no commercial vaccines against this virus are currently available except in Vietnam. Moreover, ASFV is highly stable in the environment and can survive in water, feed, and aerosols for a long time. ASFV is transmitted through the digestive and respiratory tract. Mucosal immunity is the first line of defense against ASFV. Saccharomyces cerevisiae (SC), which has been certified by the U.S. Food and Drug Administration and has a generally recognized as safe status in the food industry, was used for oral immunization in this study. ASFV antigens were effectively expressed in recombinant SC strains with high DNA copy numbers and stable growth though surface display technology and chromosome engineering (δ-integration). The recombinant SC strains containing eight ASFV antigens-KP177R, E183L, E199L, CP204L, E248R, EP402R, B602L, and B646L- induced strong humoral and mucosal immune responses in mice. There was no antigenic competition, and these antigens induced Th1 and Th2 cellular immune responses. Therefore, the oral immunization strategy using recombinant SC strains containing multiple ASFV antigens demonstrate potential for future testing in swine, including challenge studies to evaluate its efficacy as a vaccine against ASFV.


Subject(s)
African Swine Fever Virus , African Swine Fever , Antigens, Viral , Immunization , Saccharomyces cerevisiae , Viral Vaccines , Animals , African Swine Fever Virus/immunology , African Swine Fever Virus/genetics , Saccharomyces cerevisiae/immunology , Saccharomyces cerevisiae/genetics , Administration, Oral , Mice , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Antigens, Viral/immunology , African Swine Fever/immunology , African Swine Fever/prevention & control , Swine , Immunity, Mucosal , Antibodies, Viral/blood , Antibodies, Viral/immunology , Mice, Inbred BALB C , Female , Immunity, Humoral
2.
Front Cell Infect Microbiol ; 14: 1367975, 2024.
Article in English | MEDLINE | ID: mdl-38736750

ABSTRACT

The endemic outbreak of SADS-CoV has resulted in economic losses and potentially threatened the safety of China's pig industry. The molecular epidemiology of SADS-CoV in pig herds has been investigated in many provinces in China. However, there are no data over a long-time span, and there is a lack of extensive serological surveys to assess the prevalence of SADS-CoV in Chinese swine herds since the discovery of SADS-CoV. In this study, an indirect anti-SADS-CoV IgG enzyme-linked immunosorbent assay (ELISA) based on the SADS-CoV S1 protein was established to investigate the seroprevalence of SADS-CoV in Chinese swine herds. Cross-reactivity assays, indirect immunofluorescence, and western blotting assays showed that the developed ELISA had excellent SADS-CoV specificity. In total, 12,978 pig serum samples from 29 provinces/municipalities/autonomous regions in China were tested from 2022 to 2023. The results showed that the general seroprevalence of SADS-CoV in China was 59.97%, with seroprevalence ranging from 16.7% to 77.12% in different provinces and from 42.61% to 68.45% in different months. SADS-CoV is widely prevalent in China, and its seroprevalence was higher in Northeast China, North China, and Central China than in other regions. Among the four seasons, the prevalence of SADS-CoV was the highest in spring and the lowest in autumn. The results of this study provide the general seroprevalence profile of SADS-CoV in China, facilitating the understanding of the prevalence of SADS-CoV in pigs. More importantly, this study is beneficial in formulating preventive and control measures for SADS-CoV and may provide directions for vaccine development.


Subject(s)
Antibodies, Viral , Coronavirus Infections , Enzyme-Linked Immunosorbent Assay , Swine Diseases , Animals , China/epidemiology , Seroepidemiologic Studies , Swine , Enzyme-Linked Immunosorbent Assay/methods , Antibodies, Viral/blood , Swine Diseases/epidemiology , Swine Diseases/virology , Coronavirus Infections/veterinary , Coronavirus Infections/epidemiology , Coronavirus Infections/diagnosis , Immunoglobulin G/blood , Alphacoronavirus/immunology , Alphacoronavirus/genetics , Cross Reactions , Sensitivity and Specificity
3.
Environ Res ; 256: 119249, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38810831

ABSTRACT

China has always adhered to the strategy of sustainable development. It is prevalent the public want a good living environment, which requires local governments and businesses to enhance their environmental governance capabilities. Using the panel data from Chinese cities from 2012 to 2019 and econometrics models, we examine the impact mechanisms of public environmental appeals (PEA) on efficiency of collaborative governance in pollution reduction and carbon mitigation (GPC). Results indicate that there is a positive spatial clustering of GPC across cities, with high-high clustering is notably concentrated in the southern regions of China and low-low clustering is prevalent in the northern regions. Spatial econometrics model results reveal that the stronger PEA, the higher GPC. The result of mechanism analysis shows the mediation of environmentally friendly technological innovation is crucial. Subsequent inquiry uncovers that the digital economy positively moderates the impact of PEA on GPC. The Belt and Road policy region exhibits heightened sensitivity to PEA, thereby enhancing the positive impact of PEA on GPC.

4.
Genet Sel Evol ; 56(1): 26, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38565986

ABSTRACT

BACKGROUND: Chinese indigenous sheep are valuable resources with unique features and characteristics. They are distributed across regions with different climates in mainland China; however, few reports have analyzed the environmental adaptability of sheep based on their genome. We examined the variants and signatures of selection involved in adaptation to extreme humidity, altitude, and temperature conditions in 173 sheep genomes from 41 phenotypically and geographically representative Chinese indigenous sheep breeds to characterize the genetic basis underlying environmental adaptation in these populations. RESULTS: Based on the analysis of population structure, we inferred that Chinese indigenous sheep are divided into four groups: Kazakh (KAZ), Mongolian (MON), Tibetan (TIB), and Yunnan (YUN). We also detected a set of candidate genes that are relevant to adaptation to extreme environmental conditions, such as drought-prone regions (TBXT, TG, and HOXA1), high-altitude regions (DYSF, EPAS1, JAZF1, PDGFD, and NF1) and warm-temperature regions (TSHR, ABCD4, and TEX11). Among all these candidate genes, eight ABCD4, CNTN4, DOCK10, LOC105608545, LOC121816479, SEM3A, SVIL, and TSHR overlap between extreme environmental conditions. The TSHR gene shows a strong signature for positive selection in the warm-temperature group and harbors a single nucleotide polymorphism (SNP) missense mutation located between positions 90,600,001 and 90,650,001 on chromosome 7, which leads to a change in the protein structure of TSHR and influences its stability. CONCLUSIONS: Analysis of the signatures of selection uncovered genes that are likely related to environmental adaptation and a SNP missense mutation in the TSHR gene that affects the protein structure and stability. It also provides information on the evolution of the phylogeographic structure of Chinese indigenous sheep populations. These results provide important genetic resources for future breeding studies and new perspectives on how animals can adapt to climate change.


Subject(s)
Genome , Selection, Genetic , Sheep/genetics , Animals , China , Sequence Analysis, DNA , Altitude , Polymorphism, Single Nucleotide
5.
Vaccines (Basel) ; 12(3)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38543938

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) causes severe diarrhea in piglets. The current primary approach for ETEC prevention and control relies on antibiotics, as few effective vaccines are available. Consequently, an urgent clinical demand exists for developing an effective vaccine to combat this disease. Here, we utilized food-grade Lactococcus lactis NZ3900 and expression plasmid pNZ8149 as live vectors, together with the secreted expression peptide Usp45 and the cell wall non-covalent linking motif LysM, to effectively present the mutant LTA subunit, the LTB subunit of heat-labile enterotoxin, and the FaeG of F4 pilus on the surface of recombinant lactic acid bacteria (LAB). Combining three recombinant LAB as a live vector oral vaccine, we assessed its efficacy in preventing F4+ ETEC infection. The results demonstrate that oral immunization conferred effective protection against F4+ ETEC infection in mice and piglets lacking maternal antibodies during weaning. Sow immunization during late pregnancy generated significantly elevated antibodies in colostrum, which protected piglets against F4+ ETEC infection during lactation. Moreover, booster immunization on piglets during lactation significantly enhanced their resistance to F4+ ETEC infection during the weaning stage. This study highlights the efficacy of an oral LAB vaccine in preventing F4+ ETEC infection in piglets by combining the sow immunization and booster immunization of piglets, providing a promising vaccination strategy for future prevention and control of ETEC-induced diarrhea in piglets.

6.
Animals (Basel) ; 14(5)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38473071

ABSTRACT

Compared to Chinese indigenous sheep, Western sheep have rapid growth rate, larger physique, and higher meat yield. These excellent Western sheep were introduced into China for crossbreeding to expedite the enhancement of production performance and mutton quality in local breeds. Here, we investigated population genetic structure and genome-wide selection signatures among the Chinese indigenous sheep and the introduced sheep based on whole-genome resequencing data. The PCA, N-J tree and ADMIXTURE results showed significant genetic difference between Chinese indigenous sheep and introduced sheep. The nucleotide diversity (π) and linkage disequilibrium (LD) decay results indicated that the genomic diversity of introduced breeds were lower. Then, Fst & π ratio, XP-EHH, and de-correlated composite of multiple signals (DCMS) methods were used to detect the selection signals. The results showed that we identified important candidate genes related to growth rate and body size in the introduced breeds. Selected genes with stronger selection signatures are associated with growth rate (CRADD), embryonic development (BVES, LIN28B, and WNT11), body size (HMGA2, MSRB3, and PTCH1), muscle development and fat metabolism (MSTN, PDE3A, LGALS12, GGPS1, and SAR1B), wool color (ASIP), and hair development (KRT71, KRT74, and IRF2BP2). Thus, these genes have the potential to serve as candidate genes for enhancing the growth traits of Chinese indigenous sheep. We also identified tail-length trait-related candidate genes (HOXB13, LIN28A, PAX3, and VEGFA) in Chinese long-tailed breeds. Among these genes, HOXB13 is the main candidate gene for sheep tail length phenotype. LIN28A, PAX3, and VEGFA are related to embryonic development and angiogenesis, so these genes may be candidate genes for sheep tail type traits. This study will serve as a foundation for further genetic improvement of Chinese indigenous sheep and as a reference for studies related to growth and development of sheep.

8.
J Cosmet Dermatol ; 23(4): 1259-1268, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38130178

ABSTRACT

BACKGROUND: Filling therapy is becoming increasingly popular for correcting tear trough deformities (TTD). However, its therapeutic effect and retention time are limited. AIMS: To improve the clinical efficacy and safety of TTD treatment in Asians, we used a blunt separation technique to break the adhesion site of periorbital subcutaneous tissue, and while repairing skin dermis after injury, it was combined with uncrosslinked hyaluronic acid compound solution to promote collagen regeneration and treat TTDs. PATIENTS/METHODS: Twenty-six Chinese patients (21 women and 5 men) with TTD, with a mean age of 34.54 ± 9.21 (range, 20-56) years, were enrolled. Symptom improvement, recurrence rates, treatment safety, and patient satisfaction were evaluated. RESULTS: All patients' tear trough rating scale (TTRS) scores decreased significantly immediately after treatment. The TTRS scores at 1, 3, and 6 months, and 1 year after treatment demonstrated significant differences from those before treatment (all p < 0.05). All patients' experienced mild pain, erythema, and swelling during the treatment. Three patients developed postinjection bruising after treatment, which lasted for 6-7 days and subsequently disappeared. No other adverse reactions were observed during the follow-up. There were no recurrent cases, and patient satisfaction was very high. CONCLUSIONS: Blunt separation combined with an uncrosslinked sodium hyaluronate composite solution is safe and effective for treating TTDs in Asians with few side effects and has good clinical application prospects.


Subject(s)
Hyaluronic Acid , Patient Satisfaction , Male , Humans , Female , Adult , Hyaluronic Acid/adverse effects , Treatment Outcome , Rejuvenation
9.
Gut Microbes ; 15(2): 2271620, 2023 12.
Article in English | MEDLINE | ID: mdl-37953509

ABSTRACT

Microbiota are known to modulate the host response to influenza infection, but the mechanisms remain largely unknown. Gut metabolites are the key mediators through which gut microbes play anti-influenza effect. Transferring fecal metabolites from mice with high influenza resistance into antibiotic-treated recipient mice conferred resistance to influenza infections. By comparing the metabolites of different individuals with high or low influenza resistance, we identified and validated N-acetyl-D-glucosamine (GlcNAc) and adenosine showed strong positive correlations with influenza resistance and exerted anti-influenza effects in vivo or in vitro, respectively. Especially, GlcNAc mediated the anti-influenza effect by increasing the proportion and activity of NK cells. Several gut microbes, including Clostridium sp., Phocaeicola sartorii, and Akkermansia muciniphila, were positively correlated with influenza resistance, and can upregulate the level of GlcNAc in the mouse gut by exogenous supplementation. Subsequent studies confirmed that administering a combination of the three bacteria to mice via gavage resulted in similar modulation of NK cell responses as observed with GlcNAc. This study demonstrates that gut microbe-produced GlcNAc protects the host against influenza by regulating NK cells, facilitating the elucidation of the action mechanism of gut microbes mediating host influenza resistance.


Subject(s)
Gastrointestinal Microbiome , Influenza, Human , Microbiota , Mice , Animals , Humans , Killer Cells, Natural , Feces/microbiology
10.
J Virol ; 97(11): e0071923, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37929962

ABSTRACT

IMPORTANCE: African swine fever virus (ASFV) is a highly fatal swine disease that severely affects the pig industry. Although ASFV has been prevalent for more than 100 years, effective vaccines or antiviral strategies are still lacking. In this study, we identified four Bacillus subtilis strains that inhibited ASFV proliferation in vitro. Pigs fed with liquid biologics or powders derived from four B. subtilis strains mixed with pellet feed showed reduced morbidity and mortality when challenged with ASFV. Further analysis showed that the antiviral activity of B. subtilis was based on its metabolites arctiin and genistein interfering with the function of viral topoisomerase II. Our findings offer a promising new strategy for the prevention and control of ASFV that may significantly alleviate the economic losses in the pig industry.


Subject(s)
African Swine Fever Virus , African Swine Fever , Bacillus subtilis , Animals , African Swine Fever/prevention & control , Antiviral Agents/pharmacology , DNA Topoisomerases, Type II/pharmacology , Genistein/pharmacology , Swine
11.
Animals (Basel) ; 13(20)2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37893989

ABSTRACT

Wool color is controlled by a variety of genes. Although the gene regulation of some wool colors has been studied in relative depth, there may still be unknown genetic variants and control genes for some colors or different breeds of wool that need to be identified and recognized by whole genome resequencing. Therefore, we used whole genome resequencing data to compare and analyze sheep populations of different breeds by population differentiation index and nucleotide diversity ratios (Fst and θπ ratio) as well as extended haplotype purity between populations (XP-EHH) to reveal selection signals related to wool coloration in sheep. Screening in the non-white wool color group (G1 vs. G2) yielded 365 candidate genes, among which PDE4B, GMDS, GATA1, RCOR1, MAPK4, SLC36A1, and PPP3CA were associated with the formation of non-white wool; an enrichment analysis of the candidate genes yielded 21 significant GO terms and 49 significant KEGG pathways (p < 0.05), among which 17 GO terms and 21 KEGG pathways were associated with the formation of non-white wool. Screening in the white wool color group (G2 vs. G1) yielded 214 candidate genes, including ABCD4, VSX2, ITCH, NNT, POLA1, IGF1R, HOXA10, and DAO, which were associated with the formation of white wool; an enrichment analysis of the candidate genes revealed 9 significant GO-enriched pathways and 19 significant KEGG pathways (p < 0.05), including 5 GO terms and 12 KEGG pathways associated with the formation of white wool. In addition to furthering our understanding of wool color genetics, this research is important for breeding purposes.

12.
J Med Virol ; 95(10): e29171, 2023 10.
Article in English | MEDLINE | ID: mdl-37830751

ABSTRACT

Influenza A virus (IAV) relies on intricate and highly coordinated associations with host factors for efficient replication and transmission. Characterization of such factors holds great significance for development of anti-IAV drugs. Our study identified protein arginine methyltransferase 5 (PRMT5) as a novel host factor indispensable for IAV replication. Silencing PRMT5 resulted in drastic repression of IAV replication. Our findings revealed that PRMT5 interacts with each protein component of viral ribonucleoproteins (vRNPs) and promotes arginine symmetric dimethylation of polymerase basic 2 (PB2). Overexpression of PRMT5 enhanced viral polymerase activity in a dose-dependent manner, emphasizing its role in genome transcription and replication of IAV. Moreover, analysis of PB2 protein sequences across various subtypes of IAVs demonstrated the high conservation of potential RG motifs recognized by PRMT5. Overall, our study suggests that PRMT5 supports IAV replication by facilitating viral polymerase activity by interacting with PB2 and promoting its arginine symmetric dimethylation. This study deepens our understanding of how IAV manipulates host factors to facilitate its replication and highlights the great potential of PRMT5 to serve as an anti-IAV therapeutic target.


Subject(s)
Influenza A virus , Protein-Arginine N-Methyltransferases , Humans , Arginine , Influenza A virus/genetics , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Ribonucleoproteins/metabolism , Virus Replication
13.
Animals (Basel) ; 13(18)2023 Sep 16.
Article in English | MEDLINE | ID: mdl-37760343

ABSTRACT

Wool fineness affects the quality of wool, and some studies have identified about forty candidate genes that affect sheep wool fineness, but these genes often reveal only a certain proportion of the variation in wool thickness. We further explore additional genes associated with the fineness of sheep wool. Whole-genome resequencing of eight sheep breeds was performed to reveal selection signals associated with wool fineness, including four coarse wool and four fine/semi-fine wool sheep breeds. Multiple methods to reveal selection signals (Fst and θπ Ratio and XP-EHH) were applied for sheep wool fineness traits. In total, 269 and 319 genes were annotated in the fine wool (F vs. C) group and the coarse wool (C vs. F) group, such as LGR4, PIK3CA, and SEMA3C and NFIB, OPHN1, and THADA. In F vs. C, 269 genes were enriched in 15 significant GO Terms (p < 0.05) and 38 significant KEGG Pathways (p < 0.05), such as protein localization to plasma membrane (GO: 0072659) and Inositol phosphate metabolism (oas 00562). In C vs. F, 319 genes were enriched in 21 GO Terms (p < 0.05) and 16 KEGG Pathways (p < 0.05), such as negative regulation of focal adhesion assembly (GO: 0051895) and Axon guidance (oas 04360). Our study has uncovered genomic information pertaining to significant traits in sheep and has identified valuable candidate genes. This will pave the way for subsequent investigations into related traits.

14.
J Virol ; 97(10): e0092623, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37754758

ABSTRACT

IMPORTANCE: Type I interferon (IFN-I), produced by the innate immune system, plays an essential role in host antiviral responses. Proper regulation of IFN-I production is required for the host to balance immune responses and prevent superfluous inflammation. IFN regulatory factor 3 (IRF3) and subsequent sensors are activated by RNA virus infection to induce IFN-I production. Therefore, proper regulation of IRF3 serves as an important way to control innate immunity and viral replication. Here, we first identified Prohibitin1 (PHB1) as a negative regulator of host IFN-I innate immune responses. Mechanistically, PHB1 inhibited the nucleus import of IRF3 by impairing its binding with importin subunit alpha-1 and importin subunit alpha-5. Our study demonstrates the mechanism by which PHB1 facilitates the replication of multiple RNA viruses and provides insights into the negative regulation of host immune responses.


Subject(s)
DEAD Box Protein 58 , Prohibitins , RNA Viruses , Receptors, Immunologic , Signal Transduction , Virus Replication , DEAD Box Protein 58/antagonists & inhibitors , DEAD Box Protein 58/metabolism , Immunity, Innate , Interferon Regulatory Factor-3/metabolism , Karyopherins/metabolism , Prohibitins/metabolism , Receptors, Immunologic/antagonists & inhibitors , Receptors, Immunologic/metabolism , Interferon Type I/biosynthesis , Interferon Type I/immunology , RNA Viruses/growth & development , RNA Viruses/immunology , RNA Viruses/metabolism
15.
Vet Microbiol ; 284: 109827, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37542928

ABSTRACT

Swine influenza (SI) is a severe disease affecting pigs, with a huge economic impact on pig farmers. Currently, available SIV vaccines do not meet the requirements for Swine influenza prevention and control, indicating the need for vaccine development using predominant strains. Here, we isolated and identified the swine influenza virus in farms and slaughterhouses in nine provinces in China to determine the most prevalent strain. A total of 8383 samples were collected between 2013 and 2022, from which 87 swine influenza virus strains were isolated. Genome sequencing identified 62 strains of the H1N1 subtype, three strains of the H1N2 subtype, and 22 strains of the H3N2 subtype. The 521# strain virus possesses the viral ribonucleoprotein (vRNP) and matrix (M) genes from the pdm/09 lineage, the HA, NA from the original Eurasian avian-like (EA) H1N1 lineage, and the nonstructural (NS) gene from the triple-reassortant (TR) lineage. The 431# strain was also a TR, except its M-gene was derived from the original EA H1N1 lineage. The pathogenicity of two 431# strains and one typical 521# strain was evaluated in mice, and the 431# strain exhibited higher pathogenicity. Therefore, a new 521# strain was selected for vaccine production because it is the current circulating strain. The vaccine produced using the 521# strain and pre-evaluated adjuvants was effective against the homologous H05 strain, as evidenced by the normal body temperature of vaccinated pigs and low virus titer of nasal swabs. In contrast, infection with the H05 strain significantly increased the body temperature of unvaccinated pigs and increased the virus titer of nasal swabs. Notably, vaccination with the 521#-based vaccine conferred some level of protection against the heterologous B15 strain (H3N2 subtype), thus reducing the viral load in pigs.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza, Human , Orthomyxoviridae Infections , Swine Diseases , Swine , Animals , Mice , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , Virulence , Reassortant Viruses/genetics , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/veterinary , Birds
16.
J Immunol ; 211(6): 1020-1031, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37556111

ABSTRACT

The RNA-splicing ligase RNA 2',3'-cyclic phosphate and 5'-OH ligase (RTCB) is a catalytic subunit of the tRNA-splicing ligase complex, which plays an essential role in catalyzing tRNA splicing and modulating the unfolded protein response. However, the function of RTCB in influenza A virus (IAV) replication has not yet been described. In this study, RTCB was revealed to be an IAV-suppressed host factor that was significantly downregulated during influenza virus infection in several transformed cell lines, as well as in primary human type II alveolar epithelial cells, and its knockout impaired the propagation of the IAV. Mechanistically, RTCB depletion led to a robust elevation in the levels of type I and type III IFNs and proinflammatory cytokines in response to IAV infection, which was confirmed by RTCB overexpression studies. Lastly, RTCB was found to compete with DDX21 for RNA helicase DDX1 binding, attenuating the DDX21-DDX1 association and thus suppressing the expression of IFN and downstream IFN-stimulated genes. Our study indicates that RTCB plays a critical role in facilitating IAV replication and reveals that the RTCB-DDX1 binding interaction is an important innate immunomodulator for the host to counteract viral infection.


Subject(s)
Influenza A virus , Influenza, Human , Humans , DEAD-box RNA Helicases , Immunity, Innate , Influenza A virus/physiology , Ligases , RNA Helicases , RNA, Transfer , Virus Replication
17.
Int Immunopharmacol ; 122: 110544, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37392567

ABSTRACT

Influenza A virus is an important respiratory pathogen that poses serious threats to human health. Owing to the high mutation rate of viral genes, weaker cross-protection of vaccines, and rapid emergence of drug resistance, there is an urgent need to develop new antiviral drugs against influenza viruses. Taurocholic acid is a primary bile acid that promotes digestion, absorption, and excretion of dietary lipids. Here, we demonstrate that sodium taurocholate hydrate (STH) exhibits broad-spectrum antiviral activity against influenza strains H5N6, H1N1, H3N2, H5N1, and H9N2 in vitro. STH significantly inhibited the early stages of influenza A virus replication. The levels of influenza virus viral RNA (vRNA), complementary RNA (cRNA), and mRNA were specifically reduced in virus-infected cells following STH treatment. In vivo, STH treatment of infected mice alleviated clinical signs and reduced weight loss and mortality. STH also reduced TNF-α, IL-1ß, and IL-6 overexpression. STH significantly inhibited the upregulation of TLR4 and the NF-kB family member p65, both in vivo and in vitro. These results suggest that STH exerts a protective effect against influenza infection via suppression of the NF-kB pathway, highlighting the potential use of STH as a drug for treating influenza infection.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A Virus, H5N1 Subtype , Influenza A Virus, H9N2 Subtype , Influenza, Human , Humans , Animals , Mice , Influenza, Human/drug therapy , NF-kappa B/metabolism , Influenza A Virus, H1N1 Subtype/physiology , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/metabolism , Taurocholic Acid , Inflammation/drug therapy , Virus Replication , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
18.
Int J Mol Sci ; 24(14)2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37511326

ABSTRACT

Reducing fat deposition in sheep (Ovis aries) tails is one of the most important ways to combat rising costs and control consumer preference. Our previous studies have shown that oar-miR-432 is differentially expressed in the tail adipose tissue of Hu (a fat-tailed sheep breed) and Tibetan (a thin-tailed sheep breed) sheep and is a key factor in the negative regulation of fat deposition through BMP2 in ovine preadipocytes. This study investigated the effect of oar-miR-432 and its target genes in ovine preadipocytes. A dual luciferase assay revealed that DDI1 is a direct target gene of oar-miR-432. We transfected an oar-miR-432 mimic and inhibitor into preadipocytes to analyze the expression of target genes. Overexpression of oar-miR-432 inhibits DDI1 expression, whereas inhibition showed the opposite results. Compared with thin-tailed sheep, DDI1 was highly expressed in the fat-tailed sheep at the mRNA and protein levels. Furthermore, we transfected the overexpression and knockdown target genes into preadipocytes to analyze their influence after inducing differentiation. Knockdown of DDI1 induced ovine preadipocyte differentiation into adipocytes but suppressed oar-miR-432 expression. Conversely, the overexpression of DDI1 significantly inhibited differentiation but promoted oar-miR-432 expression. DDI1 overexpression also decreased the content of triglycerides. Additionally, DDI1 is a nested gene in intron 1 of PDGFD. When DDI1 was overexpressed, the PDGFD expression also increased, whereas DDI1 knockdown showed the opposite results. This is the first study to reveal the biological mechanisms by which oar-miR-432 inhibits preadipocytes through DDI1 and provides insight into the molecular regulatory mechanisms of DDI1 in ovine preadipocytes. These results have important applications in animal breeding and obesity-related human diseases.


Subject(s)
Adipose Tissue , MicroRNAs , Animals , Adipocytes/metabolism , Adipogenesis/genetics , Cell Differentiation/genetics , Introns , MicroRNAs/genetics , MicroRNAs/metabolism , Sheep/genetics
19.
J Med Virol ; 95(6): e28849, 2023 06.
Article in English | MEDLINE | ID: mdl-37282768

ABSTRACT

The genome of Influenza A virus (IAV) transcribes and replicates in the nucleus of cells and the viral ribonucleoprotein (vRNP) complex plays an important role in viral replication. As a major component of the vRNP complex, the polymerase basic protein 2 (PB2) is translocated to the nucleus via its nuclear localization signals mediated by the importins. Herein, it was identified proliferating cell nuclear antigen (PCNA) as an inhibitor of nuclear import of PB2 and subsequent viral replication. Mechanically, PCNA interacted with PB2 and inhibited the nuclear import of PB2. Furthermore, PCNA decreased the binding efficiency of PB2 with importin alpha (importin α) and the K738, K752, and R755 of PB2 were identified as the key sites binding with PCNA and importin α. Furthermore, PCNA was demonstrated to retrain the vRNP assembly and polymerase activity. Taken together, the results demonstrated that PCNA impaired the nuclear import of PB2, vRNP assembly and polymerase activity, which negatively regulated virus replication.


Subject(s)
Influenza A virus , Humans , Active Transport, Cell Nucleus , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , alpha Karyopherins/metabolism , Ribonucleoproteins/metabolism , Virus Replication
20.
PLoS Pathog ; 19(4): e1011305, 2023 04.
Article in English | MEDLINE | ID: mdl-37053288

ABSTRACT

N6-methyladenosine (m6A) modification on viral RNAs has a profound impact on infectivity. m6A is also a highly pervasive modification for influenza viral RNAs. However, its role in virus mRNA splicing is largely unknown. Here, we identify the m6A reader protein YTHDC1 as a host factor that associates with influenza A virus NS1 protein and modulates viral mRNA splicing. YTHDC1 levels are enhanced by IAV infection. We demonstrate that YTHDC1 inhibits NS splicing by binding to an NS 3' splicing site and promotes IAV replication and pathogenicity in vitro and in vivo. Our results provide a mechanistic understanding of IAV-host interactions, a potential therapeutic target for blocking influenza virus infection, and a new avenue for the development of attenuated vaccines.


Subject(s)
Influenza A virus , Influenza, Human , Humans , Influenza A virus/genetics , Influenza A virus/metabolism , Influenza, Human/genetics , Virus Replication/genetics , RNA, Messenger/genetics , RNA Splicing Factors/metabolism , Nerve Tissue Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...