Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Oxid Med Cell Longev ; 2022: 3605977, 2022.
Article in English | MEDLINE | ID: mdl-35096267

ABSTRACT

Allergen-specific immunotherapy (SIT) is the mainstay in the treatment of allergic diseases; its therapeutic efficacy is to be improved. Bacterial flagellin (FGN) has immune regulatory functions. This study investigates the role of FGN in promoting immunotherapy efficacy through modulating oxidative stress in regulatory B cells (Bregs). Blood samples were collected from patients with food allergy (FA) and healthy control (HC) subjects. CD19+ CD5+ Bregs were purified from blood samples by flow cytometry cell sorting. A murine FA model was developed with ovalbumin as the specific antigen. The results showed that peripheral Bregs from FA patients showed lower TLR5-related signals and higher apoptotic activities. The peripheral Breg frequency was negatively correlated with serum FGN levels in FA patients. Exposure to a specific antigen in culture induced antigen-specific Breg apoptosis that was counteracted by the presence of FGN. FGN diminished specific antigen-induced oxidative stress in Bregs. The STAT3/MAPKp38/NF-κB signal pathway was involved in the FGN/TLR5 signal-promoted superoxide dismutase expression in Bregs. Administration of FGN promotes the SIT efficacy in suppressing experimental FA. In summary, administration of FGN promotes SIT efficacy on FA, suggesting that the combination of FGN and SIT can be a novel therapy that has the translational potential to be employed in the treatment of allergic diseases.


Subject(s)
B-Lymphocytes, Regulatory/immunology , Food Hypersensitivity/immunology , Immunotherapy/methods , Oxidative Stress/physiology , Adolescent , Adult , Child , Female , Humans , Male , Young Adult
2.
Cytokine ; 150: 155769, 2022 02.
Article in English | MEDLINE | ID: mdl-34798413

ABSTRACT

Eosinophils (Eos) are the major effector cells in allergic response. The regulation of Eo is not fully understood yet. Flagellin (FGN) has immune regulatory functions. This study aims to elucidate the role of FGN in maintaining Eo at the static status in the intestinal tissues. A mouse food allergy (FA) model was developed. Eo mediator levels in the serum or culture supernatant or intestinal lavage fluids were assessed and used as an indicator of Eo activation. The results showed that less FGN amounts were detected in the FA mouse intestinal tissues, that were negatively correlated with the Eo activation. Mast cell-derived chymase bound FGN to induce FGN degradation. FGN formed complexes with FcγRI on Eos to prevent specific antigens from binding FcγRI, and thus, to prevent Eo activation. Administration of FGN efficiently alleviated experimental FA. In conclusion, FGN plays a critical role in maintaining Eos at static status in the intestine. Administration of FGN can alleviate experimental FA. FGN may be a novel drug candidate to be used in the treatment of Eo-related diseases.


Subject(s)
Eosinophils , Food Hypersensitivity , Animals , Flagellin/pharmacology , Intestines , Leukocyte Count , Mice
3.
Theranostics ; 11(16): 7797-7812, 2021.
Article in English | MEDLINE | ID: mdl-34335965

ABSTRACT

Rationale: Corticosteroid resistance (CR) is a serious drawback to steroid therapy in patients with ulcerative colitis (UC); the underlying mechanism is incompletely understood. Twist1 protein (TW1) is an apoptosis inhibitor and has immune regulatory functions. This study aims to elucidate the roles of TW1 in inducing and sustaining the CR status in UC. Methods: Surgically removed colon tissues of patients with ulcerative colitis (UC) were collected, from which neutrophils were isolated by flow cytometry. The inflammation-related gene activities in neutrophils were analyzed by RNA sequencing. A CR colitis mouse model was developed with the dextran sulfate sodium approach in a hypoxia environment. Results: Higher TW1 gene expression was detected in neutrophils isolated from the colon tissues of UC patients with CR and the CR mouse colon tissues. TW1 physically interacted with glucocorticoid receptor (GR)α in CR neutrophils that prevented GRα from interacting with steroids; which consequently abrogated the effects of steroids on regulating the cellular activities of neutrophils. STAT3 (Signal Transducer and Activator of Transcription-3) interacted with Ras protein activator like 1 to sustain the high TW1 expression in colon mucosal neutrophils of CR patients and CR mice. Inhibition of TW1 restored the sensitivity to corticosteroid of neutrophils in the colon tissues of a CR murine model. Conclusions: UC patients at CR status showed high TW1 expression in neutrophils. TW1 prevented steroids from regulating neutrophil activities. Inhibition of TW1 restored the sensitivity to corticosteroids in the colon tissues at the CR status.


Subject(s)
Colitis, Ulcerative/metabolism , Drug Resistance/genetics , Nuclear Proteins/metabolism , Twist-Related Protein 1/metabolism , Adrenal Cortex Hormones/pharmacology , Adult , Animals , China , Colitis , Colitis, Ulcerative/genetics , Colon/metabolism , Dexamethasone/pharmacology , Disease Models, Animal , Female , Humans , Intestinal Mucosa/metabolism , Male , Mice , Middle Aged , Neutrophils/metabolism , Nuclear Proteins/genetics , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Twist-Related Protein 1/genetics
4.
Clin Exp Immunol ; 206(2): 129-140, 2021 11.
Article in English | MEDLINE | ID: mdl-34418066

ABSTRACT

The mechanism of antigen-specific regulatory T cell (Treg ) induction is not yet fully understood. Curcumin has an immune regulatory function. This study aims to induce antigen-specific Tregs by employing extracellular vesicles (EVs) that carry two types of T cell activators. Two types of T cell activators, ovalbumin (OVA)/major histocompatibility complex-II (MHC-II) and tetramethylcurcumin (FLLL31) (a curcumin analog) were carried by dendritic cell-derived extracellular vesicles, designated OFexo. A murine model of allergic rhinitis (AR) was developed with OVA as the specific antigen. AR mice were treated with a nasal instillation containing OFexo. We observed that OFexo recognized antigen-specific T cell receptors (TCR) on CD4+ T cells and enhanced Il10 gene transcription in CD4+ T cells. Administration of the OFexo-containing nasal instillation induced antigen-specific type 1 Tregs (Tr1 cells) in the mouse airway tissues. OFexo-induced Tr1 cells showed immune suppressive functions on CD4+ T cell proliferation. Administration of OFexo efficiently alleviated experimental AR in mice. In conclusion, OFexo can induce antigen-specific Tr1 cells that can efficiently alleviate experimental AR. The results suggest that OFexo has the translational potential to be employed for the treatment of AR or other allergic disorders.


Subject(s)
Antigens/immunology , Extracellular Vesicles/immunology , Lymphocyte Activation , Rhinitis, Allergic/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Disease Models, Animal , Mice
5.
J Innate Immun ; 13(5): 295-305, 2021.
Article in English | MEDLINE | ID: mdl-34182560

ABSTRACT

The mechanism of generation of antigen-specific regulatory T cells (Treg) is not fully understood yet. This study aimed to investigate the role of intestinal epithelial cell (IEC)-derived CD83 in the Treg generation in the intestine. In this study, the role of CD83 in the generation of Tregs was assessed in a cell-culture model and a food allergy (FA) mouse model. We found that mouse IECs expressed CD83; its levels were markedly lower in sensitized mice. Mice with CD83-deficient IECs failed to induce Tregs in the intestine. CD83 promoted the transforming growth factor-ß-inducible early gene 1 (TIEG1) expression in CD4+ T cells. Toll-like receptor 4 (TLR4)/myeloid differentiation protein-2 (MD-2) complex mediated the effects of CD83 on the expression of TIEG1. Activation of the CD83/TLR4/MD-2/TIEG1 promoted the Treg generation. Concomitant administration of CD83 and specific antigens, but not either one alone, efficiently inhibited experimental FA via inducing the Treg generation in the intestine. In Conclusion, IEC expresses CD83 that is low in sensitized mice. Concomitant administration of CD83 and specific antigens efficiently inhibits FA in a murine model via inducing Tregs in the intestine. The data suggest that CD83 has translation potential in the treatment of FA.


Subject(s)
Antigens, CD/metabolism , Food Hypersensitivity , Immunoglobulins/metabolism , Membrane Glycoproteins/metabolism , T-Lymphocytes, Regulatory , Animals , DNA-Binding Proteins , Epithelial Cells , Immune Tolerance , Intestines , Mice , Transcription Factors , CD83 Antigen
6.
Eur J Immunol ; 51(7): 1748-1761, 2021 07.
Article in English | MEDLINE | ID: mdl-33811758

ABSTRACT

Treg are known to have a central role in orchestrating immune responses, but less is known about the destiny of Treg after being activated by specific Ags. This study aimed to investigate the role of superoxide dismutase, an active molecule in the regulation of oxidative stress in the body, in the prevention of Treg apoptosis induced by specific Ags. Ag-specific Tregs were isolated from the DO11.10 mouse intestine. A food allergy mouse model was developed with ovalbumin as the specific Ag and here, we observed that exposure to specific Ag induced Treg apoptosis through converting the precursor of TGF-ß to its mature form inside the Tregs. Oxidative stress was induced in Tregs upon exposure to specific Ags, in which Smad3 bound the latency-associated peptide to induce its degradation, converting the TGF-ß precursor to its mature form, TGF-ß. Suppressing oxidative stress in Tregs alleviated the specific Ag-induced Treg apoptosis in in vitro experiments and suppressed experimental food allergy by preventing the specific Ag-induced Treg apoptosis in the intestine. In conclusion, exposure to specific Ags induces Treg apoptosis and it can be prevented by upregulating superoxide dismutase or suppressing reactive oxidative species in Tregs.


Subject(s)
Antigens/immunology , Apoptosis/immunology , Oxidative Stress/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Lymphocyte Activation/immunology , Mice , Mice, Inbred BALB C , Ovalbumin/immunology , Smad3 Protein/immunology , Superoxide Dismutase/immunology , Transforming Growth Factor beta/immunology , Up-Regulation/immunology
7.
Am J Transl Res ; 12(10): 6827-6840, 2020.
Article in English | MEDLINE | ID: mdl-33194075

ABSTRACT

The vascular endothelial barrier dysfunction is associated with the pathogenesis of many cardiovascular diseases, such as atherosclerosis (AS). This study aims to identify specific antigen (Ag, in short)-specific polymorphonuclear neutrophils (PMN) in AS patients and to investigate the role of "Ag-specific" PMN activation in causing vascular endothelial barrier dysfunction. In this study, PMNs were isolated from blood samples collected from patients with AS and analyzed with immunological approaches. Human umbilical vein endothelial cells (HUVEC) monolayers were used as a vascular endothelial barrier model. The results showed that "Ag-specific" PMNs were identified in the blood of 50 AS patients. This subset of PMN was featured as the FcγRI and specific IgG (sIgG) complexes on the cell surface; exposure to specific Ags triggered the "Ag-specific" PMNs to release proinflammatory cytokines. PMN-derived cytokine levels in the serum were positively correlated with the serum levels of sIgG in AS patients. Exposure of naive PMNs to sIgG formed FcγRI and sIgG complexes on the surface; this conferred PMNs the property to be recognized and activated by specific Ag. Stimulation of "Ag-specific" PMN activated the mitogen-activated protein kinase and the activities of nuclear factor activated T cells and promoted the gene transcription of tumor necrosis factor-α. Coculture of "Ag-specific" PMNs and HUVEC monolayers in the presence of specific Ag resulted in the HUVEC monolayer barrier dysfunction. In conclusion, "Ag-specific" PMNs were identified in AS patients. Activation of the PMNs compromised vascular endothelial barrier function. Therefore, to regulate the "Ag-specific" PMN's activities may have translational potential in the treatment of AS.

SELECTION OF CITATIONS
SEARCH DETAIL
...