Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38656108

ABSTRACT

Topological insulators (TIs) with spin-momentum-locked surface states and considerable spin-to-charge conversion (SCC) efficiency are ideal substitutes for the nonmagnetic layer in the traditional ferromagnetic/nonmagnetic (FM/NM) spintronic terahertz (THz) emitters. Here, the TI/ferrimagnetic structure as an effective polarization tunable THz source is verified by terahertz emission spectroscopy. The emitted THz electric field can be separated into two THz components utilizing their opposite symmetry on pump polarization and the magnetic field. TI not only emits a THz electric field via the linear photogalvanic effect (LPGE) but also serves as the medium of SCC via the inverse Edelstein effect (IEE) in the heterostructure. In addition, the amplitude and polarity of the SCC component can be efficiently manipulated by temperature in our ferrimagnetic TbFeCo layer compared with Co or Fe. Once these two THz components are delicately set orthogonally, an elliptical THz wave is generated by the intrinsic phase difference at the THz frequency range. The feasible control of its polarization and chirality is demonstrated by three means: pump polarization, magnetic field, and temperature. These appealing observations may pave the way for the development of elliptical THz wave emitters and polarization-sensitive THz spectroscopy.

2.
Article in English | MEDLINE | ID: mdl-37883114

ABSTRACT

Spintronic terahertz (THz) emitters based on synthetic antiferromagnets (SAFs) of FM1/Ru/FM2 (FM: ferromagnet) have shown great potential for achieving coherent superposition and significant THz power enhancement due to antiparallel magnetization alignment. However, key issues regarding the effects of interlayer exchange coupling and net magnetization on THz emissions remain unclear, which will inevitably hinder the performance improvement and practical application of THz devices. In this work, we have investigated the femtosecond laser-induced THz emission in Pt (3)/CoFe (3)/Ru (tRu = 0-3.5)/CoFe (tCoFe = 1.5-10)/Pt (3) (in units of nm) films with compensated and uncompensated magnetic moments. Antiferromagnetic (AF) coupling occurs in the Ru thickness ranges of 0.2-1.1 and 1.9-2.3 nm, with the first peak (tRu = 0.4 nm) of the AF coupling field (Hex) significantly higher than that of the second peak (2.0 nm). Rather high THz amplitude is found for the samples with strong AF coupling. Nevertheless, despite the same remanence ratio of zero, the THz amplitude for the symmetric SAF films declines significantly as the tRu decreases from 0.8 to 0.4 nm, which is mainly ascribed to the noncolinear magnetization vectors due to the increased biquadratic coupling term. Specifically, we demonstrate that an asymmetric SAF structure with a dominant FM layer is more favored than the completely compensated one, which could generate significantly enhanced THz electric field with well-controlled polarity and intensity. In addition, as the temperature decreases, the THz emission intensity increases for the SAF samples of tRu = 0.9 nm with negligible biquadratic coupling, which is contrary to the decreasing trend of the tRu = 0.4 nm sample and has been attributed to the greatly enhanced Hex.

3.
Langmuir ; 39(9): 3312-3319, 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36802635

ABSTRACT

Enhancing the fluorescence of organic dye by colloidal particles is one of the most promising routes to optimize fluorescence detection. However, in addition to metallic particles, which serve as the most frequently used particles and have been found to employ the plasmonic resonance to provide strong fluorescence enhancement, neither new types of colloidal particles nor new fluorescence mechanisms have been intensively explored in recent years. In this work, strongly enhanced fluorescence was observed when 2-(2-hydroxyphenyl)-1H-benzimidazole (HPBI) molecules were simply mixed with zeolitic imidazolate framework-8 (ZIF-8) colloidal suspensions. Moreover, the enhancement factor ΔI = IHPBI+ZIF-8/IHPBI does not increase accordingly with the increasing amount of HPBI. To find out how the strong fluorescence was triggered and affected by the amount of HPBI, multiple techniques were applied to analyze the adsorption behavior. By combining analytical ultracentrifugation with first-principles calculations, we proposed that HPBI molecules were adsorbed onto the surface of ZIF-8 particles coordinatively and electrostatically, depending on the concentration of HPBI molecules. The coordinative adsorption would result in a new kind of fluorescence emitter. The new fluorescence emitters tend to distribute on the outer surface of ZIF-8 particles periodically. The distance between each fluorescence emitter is fixed and much smaller than the wavelength of the excitation light. Thus, it can be concluded that collective spontaneous emission might be triggered.

4.
Chemistry ; 29(22): e202300025, 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-36691919

ABSTRACT

We prepared organic polymer poly-3-hexylthiophene (p3ht) nanoparticles (NPs) and graphene oxide (GO)/reduced graphene oxide (RGO) composites p3ht NPs-GO/RGO by using the reprecipitation method. We demonstrated that GO/RGO could improve the ordering and planarity of p3ht chains as well as the formation of p3ht NPs, and confirmed the effects of GO/RGO on the fluorescence and carrier transport dynamics of p3ht NPs by using femtosecond fluorescence upconversion and transient absorption (TA) techniques. Ultrafast electron transfer (∼1 ps) between GO/RGO and p3ht NPs quenched the fluorescence of p3ht NPs, indicating excellent properties of p3ht NPs-GO/RGO as the charge transfer complexes. Efficient electron transfer may promote the applications of p3ht NPs-GO/RGO composites in organic polymer solar cells and photocatalysis. Moreover, RGO had stronger interfacial interactions and more matched conduction band energy levels with p3ht NPs than GO did, which implied that p3ht NPs-RGO might have greater application values than p3ht NPs-GO.

5.
J Chem Phys ; 157(21): 214701, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36511543

ABSTRACT

Graphene and its derivatives, due to their two-dimensional carbon nanostructures, have provided new opportunities to fortify organic dye-based photovoltaic and photocatalytic assemblies. In this article, we employed organic dyes Rhodamine B (RdB) and graphene oxide (GO) [or reduced graphene oxide (RGO)] to assemble the composite materials RdB-GO and RdB-RGO. It was found that both GO and RGO could strongly quench the fluorescence (FL) intensity of RdB. The mechanisms of FL quenching in both RdB-GO and RdB-RGO have been investigated by using femtosecond fluorescence up-conversion and transient absorption spectroscopy. When RdB was anchored on the GO (or RGO) surface, the solvent relaxation component 3.1 ps of pure RdB disappeared; instead, the ultrafast excited state electron transfer process (1-2ps) in RdB-GO and RdB-RGO was found and originated from the LUMO of RdB to the conduction band of GO (or RGO). We further reveal that the energy level change caused by GO reduction makes the energy levels of RGO closer to those of RdB, resulting in the electron transfer being more effective in RdB-RGO. Therefore, the RdB-RGO composite materials may have higher application values for dye-sensitized solar cells.

6.
Article in English | MEDLINE | ID: mdl-35578900

ABSTRACT

The temperature (T) dependences of magnetization dynamics, especially for magnetic damping anisotropy, have been systematically investigated in well-ordered Co2FeAl films with a biaxial anisotropy. It is found that the damping anisotropy factor Q, defined as the fractional difference of damping between the hard and easy axes, changes from 0.35 to -0.09 as T decreases from 300 to 80 K, performing a distinctive reorientation transition at T ∼ 200 K. Through the thickness-dependent damping measurement results, the damping anisotropy reorientation is verified to originate from the competitions between the intrinsic anisotropic distribution of bulk spin orbit coupling and the interfacial two-magnon scattering. The former governs the effective damping at high temperatures, while the latter with an opposite fourfold symmetry gradually plays a dominant role at reduced temperatures, leading to the transition of the Q value from positive to negative. The clear clarification of damping anisotropy variation as well as the underlying mechanism in this study would be of great importance for designing key spintronic devices with optimized dynamic magnetic properties.

7.
RSC Adv ; 12(15): 9342-9350, 2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35424877

ABSTRACT

Zeolitic imidazolate framework-8 (ZIF-8) is one of the most promising metal-organic frameworks because of its excellent high porosity, stability and geometrically well-defined structure. However, the application of ZIF-8 in the field of fluorescent molecular sensing has not been intensively explored. Our work demonstrates the versatility of ZIF-8 as a carrier material, which can be used for small molecule [2-(2-hydroxyphenyl)-1H-benzimidazole (HPBI)] capture and fluorescence enhancement. ZIF-8 displays luminescent behavior changes when combined with HPBI, as the emission peaks of ZIF-8 and HPBI are located in the same range for resonance enhancement of fluorescence. The results of the experiment indicate that the fluorescence enhancement effect will change in the presence of different concentrations of HPBI. We propose that the pore structure of ZIF-8 could provide an opportunity for the adsorption of HPBI molecules, and eventually the adsorption would saturate. The high porosity of ZIF-8 provides the path to HPBI aggregation or entrance into the ZIF-8 internal structure. Our results suggest that ZIF-8 may offer great promise for molecular fluorescence sensing.

8.
J Phys Chem Lett ; 12(22): 5349-5356, 2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34076440

ABSTRACT

CoTPP, as a common hypsoporphyrin, is usually not a luminescent molecule because of the open-shell Co ion. In this paper, well-defined multilayer CoTPP molecules self-assembled on Au(111) surface are characterized layer by layer with scanning tunneling microscope (STM) induced luminescence. By using the highly localized STM tunneling current, we not only investigate the influence of bias polarity on the amplitude of distinct plasmonic emission resulted from the interaction between the metal substrate and the metal ions but also first obtain the light emission from the hypsoporphyrins in the tunneling junction. The density-matrix method and the combined approach of classical electrodynamics and first-principles calculation are used to explain the mechanism of the light emission. These findings may expand the underlying physics of plasmon-exciton coupling in STM nanocavity and reveal a new possible path to overcome the fluorescent potential of hypsoporphyrins by the intense localized electric fields.

9.
Nanoscale Res Lett ; 16(1): 90, 2021 May 22.
Article in English | MEDLINE | ID: mdl-34021820

ABSTRACT

We investigate the fluorescence from submonolayer rhodamine 6G molecules near gold nanoparticles (NPs) at a well-controlled poly (methyl methacrylate) (PMMA) interval thickness from 1.5 to 21 nm. The plasmonic resonance peaks of gold NPs are tuned from 530 to 580 nm by the PMMA spacer of different thicknesses. Then, due to the plasmonic resonant excitation enhancement, the emission intensity of rhodamine 6G molecules at 562 nm is found to be enhanced and shows a decline as the PMMA spacer thickness increases. The variation of spectral intensity simulated by finite-difference time-domain method is consistent with the experimental results. Moreover, the lifetime results show the combined effects to rhodamine 6G fluorescence, which include the quenching effect, the barrier effect of PMMA as spacer layer and the attenuation effect of PMMA films.

10.
J Phys Chem Lett ; 12(9): 2394-2399, 2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33661010

ABSTRACT

Topological insulators (TIs) with spin-momentum-locked metallic surface states can exert giant spin-orbit torques, offering great potential in energy-efficient magnetic memory devices. In this work, temperature (T)-dependent SOT efficiencies are investigated in Sb2Te3/Ta/TbCo heterostructures with perpendicular magnetic anisotropy. The spin Hall angle θSH is around 0.16 at room temperature (RT), which is much higher than that of the control sample without TI. Moreover, as T decreases from RT down to 10 K, θSH exhibits a conspicuous 5-fold enhancement. Detailed analysis indicates that the θSH enhancement at reduced temperatures mainly results from the improved spin-polarized surface states, as evidenced from the continuously increased ratio of surface-to-bulk conduction. The θSH difference between 20 and 10 nm Sb2Te3 gradually shrinks with the increase of T, which is due to the increase of bulk state contribution. Our findings provide a deep insight into the spin transport mechanisms and robust charge-spin conversion in TIs.

11.
Opt Express ; 26(3): 3489-3496, 2018 Feb 05.
Article in English | MEDLINE | ID: mdl-29401876

ABSTRACT

We investigate the fluorescence from submonolayer porphyrin molecules near silver-polymer core-shell nanoparticles (NPs) at a well-controlled separation distance of about 1 nm - 5 nm. When porphyrin molecules are deposited on silver NPs with the plasmonic resonance peak at about 410 nm, which matches very closely with the 405-nm excitation laser and the absorption band of porphyrin molecules, their emission intensity is found to be enhanced due to the plasmonic resonant excitation enhancement, and shows a decline as the increasing polymer shell thickness. Meanwhile, the lifetime results demonstrate that there exists the fluorescence quenching due to the charge transfer and nonradiative energy transfer losses, which is also the main reason that the maximum enhancement factor obtained in experiment is only about 2.3, although the theoretical one is above 60 according to the electric field distribution near silver NPs calculated by finite-difference time-domain method.

12.
Sci Rep ; 6: 22756, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-26948654

ABSTRACT

ZnTPP (Zinc-Tetraphenylporphyrin) is one of the most common nanostructured materials, having high stability and excellent optoelectronic properties. In this paper, the fluorescence features of self-assembled ZnTPP monomers and aggregates on Au(111) surface are investigated in detail on the nanometer scale with scanning tunneling microscopy (STM). The formation of ZnTPP dimers is found in thick layers of a layer-by-layer molecular assembly on Au substrate with its specific molecular arrangement well characterized. Tip-induced luminescence shows a red shift from tilted dimers comparing with the behavior from monomers, which can be attributed to the change of vibrational states due to the intermolecular interaction and the increasing dielectric effect. The nanoscale configuration dependence of electroluminescence is demonstrated to provide a powerful tool aiding the design of functional molecular photoelectric devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...