Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 181
Filter
1.
Food Chem X ; 22: 101434, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38779499

ABSTRACT

In this study, lipase from Candida rugosa was immobilized on hydrophobic hierarchical porous hollow silica microsphere (HPHSM-C3) via adsorption. The prepared biocatalyst HPHSM-C3@CRL exhibited higher activity, thermal and pH stability. HPHSM-C3@CRL remained 70.2% of initial activity after 30 days of storage at 24 °C and 50.4% of initial activity after 10 cycles. Moreover, HPHSM-C3@CRL was utilized in enzymatic enrichment of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) in glycerides, achieving ω-3 PUFAs content of 53.42% with the hydrolysis rate of 48.78% under optimal condition. The Km and Vmax value of HPHSM-C3@CRL was 42.2% lower and 63.5% higher than those of CRL, respectively. The 3D structure analysis of CRL, substrates and pore structure of HPHSM-C3 suggested that the hierarchical pore improved activity and selectivity of immobilized lipase. This result demonstrated that HPHSM-C3@CRL may be an effective biocatalyst for the enzymatic enrichment of ω-3 PUFAs in food industries.

2.
Research (Wash D C) ; 7: 0377, 2024.
Article in English | MEDLINE | ID: mdl-38812531

ABSTRACT

4,4-Dimethylsterols constitute a unique class of phytosterols responsible for regulating endogenous cannabinoid system (ECS) functions. However, precise mechanism through which 4,4-dimethylsterols affect fat metabolism and the linkage to the ECS remain unresolved. In this study, we identified that 4,4-dimethylsterols, distinct from 4-demethseterols, act as inhibitors of fatty acid amide hydrolases (FAAHs) both in vivo and in vitro. Genetic ablation of FAAHs (faah-1) abolishes the effects of 4,4-dimethylsterols on fat accumulation and locomotion behavior in a Caenorhabditis elegans model. We confirmed that dietary intervention with 4,4-dimethylsterols in a high-fat diet (HFD) mouse model leads to a significant reduction in body weight (>11.28%) with improved lipid profiles in the liver and adipose tissues and increased fecal triacylglycerol excretion. Untargeted and targeted metabolomics further verified that 4,4-dimethylsterols influence unsaturated fatty acid biosynthesis and elevate oleoyl ethanolamine levels in the intestine. We propose a potential molecular mechanism in which 4,4-dimethylsterols engage in binding interactions with the catalytic pocket (Ser241) of FAAH-1 protein due to the shielded polarity, arising from the presence of 2 additional methyl groups (CH3). Consequently, 4,4-dimethylsterols represent an unexplored class of beneficial phytosterols that coordinate with FAAH-1 activity to reduce fat accumulation, which offers new insight into intervention strategies for treating diet-induced obesity.

3.
J Agric Food Chem ; 72(11): 5503-5525, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38442367

ABSTRACT

Conjugated linoleic acid (CLA) has been extensively characterized due to its many biological activities and health benefits, but conjugated linolenic acid (CLnA) is still not well understood. However, CLnA has shown to be more effective than CLA as a potential functional food ingredient. Current research has not thoroughly investigated the differences and advantages between CLnA and CLA. This article compares CLnA and CLA based on molecular characteristics, including structural, chemical, and metabolic characteristics. Then, the in vivo research evidence of CLnA on various health benefits is comprehensively reviewed and compared with CLA in terms of effectiveness and mechanism. Furthermore, the potential of CLnA in production technology and product protection is analyzed. In general, CLnA and CLA have similar physicochemical properties of conjugated molecules and share many similarities in regulation effects and pathways of various health benefits as well as in the production methods. However, their specific properties, regulatory capabilities, and unique mechanisms are different. The superior potential of CLnA must be specified according to the practical application patterns of isomers. Future research should focus more on the advantageous characteristics of different isomers, especially the effectiveness and safety in clinical applications in order to truly exert the potential value of CLnA.


Subject(s)
Food Ingredients , Linoleic Acids, Conjugated , alpha-Linolenic Acid/chemistry , Linoleic Acids, Conjugated/chemistry , Isomerism , Functional Food
4.
Crit Rev Food Sci Nutr ; : 1-21, 2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38343184

ABSTRACT

Omega-9 monounsaturated fatty acids (ω-9 MUFAs) are a group of unsaturated fatty acids with a unique double bond in the 9th position at the end of the methyl group terminal, having the same double bond location but different carbon chain lengths. Although knowledge about ω-9 MUFAs is constantly being updated, problems with its integration remain in the field. The review summarizes the natural sources, biosynthesis, and catabolic properties of ω-9 MUFAs, emphasizing their positive effects on health functions as well as the active intermediates produced during their metabolic processes. Subsequently, the gap between the actual consumption and recommended intake of ω-9 MUFAs in our daily diet was calculated, and their food safety and potential challenges were discussed. Finally, the outlook of potential future applications and possible research trends are presented. The review aims to promote the rational consumption of ω-9 MUFAs, provide references for their application as functional foods and clinical auxiliary special medical foods, and propose more ideas and possibilities for future scientific research.

5.
Food Chem ; 443: 138546, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38301557

ABSTRACT

Preterm formulas are usually supplemented with medium-chain triacylglycerols (MCT) whereas breast milk contains more medium and long-chain triacylglycerols (MLCT). Different types of triacylglycerol (TAG) containing medium-chain fatty acids may influence lipid digestion. In this study, the digestive characteristics of breast milk and preterm formulas with different MCT contents were evaluated using a dynamic in vitro system simulating the gastrointestinal tract of preterm infants. The lipolysis products, including diacylglycerols, monoacylglycerols (MAGs), free fatty acids, and undigested TAGs, were analyzed. Formulas with MCT addition has significantly (P < 0.05) lower lipolysis degree (LD, 69.35%-71.28%) than breast milk (76.93%). Higher amounts of C8:0 and C10:0 were released in the formulas with MCT addition. Breast milk released more C18:1n-9, C18:2n-6, and MAG containing C16:0, whereas formulas released more free C16:0. The Pearson correlation heatmap showed that the LD value was significantly and positively (P < 0.05) related to the MLCT and sn-2 C16:0 content.


Subject(s)
Fatty Acids , Infant, Premature , Infant , Female , Infant, Newborn , Humans , Triglycerides/chemistry , Fatty Acids/analysis , Milk, Human/chemistry , Digestion
6.
Molecules ; 29(4)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38398664

ABSTRACT

Medium- and long-chain triacylglycerol (MLCT), as a novel functional lipid, is valuable due to its special nutritional properties. Its low content in natural resources and inefficient synthesis during preparation have limited its practical applications. In this study, we developed an effective Pickering emulsion interfacial catalysis system (PE system) for the enzymatic synthesis of MLCT by trans-esterification. Lipase NS 40086 served simultaneously as a catalyst and a solid emulsifier to stabilize the Pickering emulsion. Benefitting from the sufficient oil-water interface, the obtained PE system exhibited outstanding catalytic efficiency, achieving 77.5% of MLCT content within 30 min, 26% higher than that of a water-free system. The Km value (0.259 mM) and activation energy (14.45 kJ mol-1) were 6.8-fold and 1.6-fold lower than those of the water-free system, respectively. The kinetic parameters as well as the molecular dynamics simulation and the tunnel analysis implied that the oil-water interface enhanced the binding between substrate and lipase and thus boosted catalytic efficiency. The conformational changes in the lipase were further explored by FT-IR. This method could give a novel strategy for enhancing lipase activity and the design of efficient catalytic systems to produce added-value lipids. This work will open a new methodology for the enzymatic synthesis of structured lipids.

7.
Food Funct ; 15(3): 1208-1222, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38224465

ABSTRACT

Background: Uncertainty exists about the link between omega-3 fatty acid, omega-6 fatty acid, and total polyunsaturated fatty acid (PUFA) intake and mortality in atherosclerotic cardiovascular disease (ASCVD) patients, and no meta-analyses summarize the relationship between these various types of PUFAs and ASCVD. Methods: Web of Science, PubMed, EBSCO and Cochrane Library up to November 30, 2022 were searched for prospective randomized controlled studies investigating the relationships among omega-3, omega-6, and PUFA intake and mortality and cardiovascular events in ASCVD patients. This study has been registered at PROSPERO (No. CRD42023407566). Results: This meta-analysis included 21 publications from 17 studies involving 40 861 participants published between 1965 and 2022. In ASCVD patients, omega-3 may lower all-cause mortality (RR: 0.90, 95% CI [0.83, 0.98], I2 = 8%), CVD mortality (RR: 0.82, 95% CI [0.73, 0.91], I2 = 34%) and CVD events (RR: 0.90, 95% CI [0.86, 0.93], I2 = 79%). Subgroup analyses showed that EPA or EPA ethyl ester supplementation reduced CVD events, while the mixture of EPA and DHA had no significant impact. Long-chain omega-3 consumption of 1.0-4.0 g per d reduced death risk by 3.5% for each 1 g per d increase. Omega-6 and PUFA had no significant effect on mortality or CVD events, with low-quality evidence and significant heterogeneity. Conclusions: omega-3 intake is associated with a reduced risk of all-cause mortality, CVD mortality, and CVD events in ASCVD patients, while omega-6 or total PUFA intake showed no significant association. Increasing the omega-3 intake by 1 g per d resulted in a 3.5% decrease in the risk of death. These findings support the recommendation of supplements with omega-3 fatty acids for the secondary prevention of ASCVD.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Fatty Acids, Omega-3 , Humans , Prospective Studies , Fatty Acids, Omega-3/adverse effects , Fatty Acids, Unsaturated , Dietary Supplements , Atherosclerosis/drug therapy , Atherosclerosis/prevention & control , Atherosclerosis/chemically induced
8.
Int J Biol Macromol ; 261(Pt 1): 129820, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38286385

ABSTRACT

Marine-based dietary oils (MDOs), which are naturally obtained from different sources, have been scientifically recommended as potent functional bioactives owing to their therapeutic biological activities; however, they have exhibited plenty of health benefits. Though they are very sensitive to light, temperature, moisture, and oxygen, as well as being chemically unstable and merely oxidized, this may limit their utilization in food and pharmaceutical products. Miro- and nanoencapsulation techniques are considered to be the most promising tactics for enhancing the original characteristics, physiochemical properties, and therapeutic effects of entrapped MDOs. This review focuses on the biomacromolecule-stabilized micro/nanocarriers encompassing a wide range of MDOs. The novel-equipped polysaccharides and protein-based micro/nanocarriers cover microemulsions, microcapsules, nanoemulsions, and nanoliposomes, which have been proven to be encouraging candidates for the entrapment of diverse kinds of MDOs. In addition, the current state-of-the-art loading of various MDOs through polysaccharide and protein-based micro/nanocarriers has been comprehensively discussed and tabulated in detail. Biomacromolecule-stabilized nanocarriers, particularly nanoemulsions and nanoliposomes, are addressed as propitious nanocargos for protection of MDOs in response to thought-provoking features as well as delivering the successful, meticulous release to the desired sites. Gastrointestinal fate (GF) of biopolymeric micro/nanocarriers is fundamentally based on their centrifugation, dimension, interfacial, and physical properties. The external surface of epithelial cells in the lumen is the main site where the absorption of lipid-based nanoparticles takes place. MDO-loaded micro- and nanocarriers with biological origins or structural modifications have shown some novel applications that could be used as future therapies for cardiovascular disorders, thanks to today's cutting-edge medical technology. In the future, further investigations are highly needed to open new horizons regarding the application of polysaccharide and protein-based micro/nanocarriers in food and beverage products with the possibility of commercialization in the near future for industrial use.


Subject(s)
Cardiovascular Diseases , Dietary Fats, Unsaturated , Nanoparticles , Humans , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/prevention & control , Antioxidants/chemistry , Food , Polysaccharides/chemistry
9.
Article in English | MEDLINE | ID: mdl-38237045

ABSTRACT

Medium- and long-chain triacylglycerol (MLCT) is a structured lipid with both medium- and long-chain fatty acids in one triacylglycerol molecule. Compared with long-chain triacylglycerol (LCT), which is mainly present in common edible oils, and the physical blend of medium-chain triacylglycerol with LCT (MCT/LCT), MLCT has different physicochemical properties, metabolic characteristics, and nutritional values. In this article, the recent advances in the use of MLCT in food formulations are reviewed. The natural sources and preparation of MLCT are discussed. A comprehensive summary of MLCT digestion, absorption, transport, and oxidation is provided as well as its health benefits, including reducing the risk of overweight, hypolipidemic and hypoglycemic effects, etc. The potential MLCT uses in food formulations, such as infant formulas, healthy foods for weight loss, and sports foods, are summarized. Finally, the current safety assessment and regulatory status of MLCT in food formulations are reviewed. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 15 is April 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

10.
Foods ; 12(21)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37959052

ABSTRACT

Red palm oil (RPO), which is rich in micronutrients, especially carotenoids, is different from its deodorized counterpart, palm oil. It is considered as one of the most promising food ingredients, owing to its unique compositions and nutritional values, while its usage could be further developed by improving its thermal behaviors. In this article, two typical commercial RPOs, HRPO (H. red palm oil) and NRPO (N. red palm oil), were evaluated by analyzing their fatty acids, triacylglycerols, micronutrients, oxidative stability index (OSI), and solid fat contents (SFCs). Micronutrients, mainly carotenes, tocopherols, polyphenols, and squalene, significantly increased the oxidative stability indices (OSIs) of the RPOs (from 10.02 to 12.06 h), while the OSIs of their micronutrient-free counterparts were only 1.12 to 1.82 h. HRPO exhibited a lower SFC than those of NRPO. RPOs softened at around 10 °C and completely melted near 20 °C. Although the softening problem may limit the usages of RPOs, that problem could be solved by incorporating RPOs with mango kernel fat (MKF). The binary blends containing 40% RPOs and 60% MKF exhibited desirable compatibilities, making that blend suitable for the manufacture of aerated emulsions with improved whipping performance and foam stabilities. The results provide a new application of RPOs and MKF in the manufacture of aerated emulsions with improved nutritional values and desired whipping capabilities.

11.
Int J Biol Macromol ; 253(Pt 8): 127561, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37865364

ABSTRACT

In the present study, carrageenan (CG) was combined with sodium alginate (SA), gum arabic (GA), and locust bean gum (LBG) to obtain four gum combinations (CG, CG + SA, CG + GA, and CG + LBG). The effects of different combinations on rheological properties and quiescent stabilities of PCEs were systematically investigated through characterization of fresh emulsion related parameters (rheological properties, forces between proteins, zeta potentials, surface tensions, interfacial adsorption properties, and multiple light scattering) and storage related parameters (visual appearance, creaming index, viscosities, particle sizes, and microscopic morphology). Rheological results indicated that CG PCEs had the highest apparent viscosities of 7.77-41.91 Pa·s at 0.01 s-1, followed by CG + SA PCEs (2.35-30.62 Pa·s), CG + GA PCEs (2.37-21.16 Pa·s), and CG + LBG PCEs (2.06-19.93 Pa·s). At low thickener concentration (0.02 %), CG PCE exhibited weak gel structure due to higher G' than G″ at all frequencies, while CG + SA, CG + GA, and CG + LBG PCEs had entangled network due to intersection between G' and G″. After three months of storage, CG + SA PCEs showed the lowest creaming index values (11.47-17.75 %), which were significantly lower than CG PCEs (15.35-20.85 %), CG + GA PCEs (15.97-24.42 %), and CG + LBG PCEs (17.13-21.71 %). Meanwhile, all the samples except for 0.02 % CG + SA PCE completely lost fluidity, and their viscosities were above 14,000 mPa·s. It was further found that CG stabilized emulsions showed severe droplet flocculation induced by hydrophobic interactions among adsorbed proteins. Combination of CG with SA, GA, and LBG, especially CG + SA, formed strong network structure and reduced contribution of hydrophobic interactions, which effectively inhibited flocculation of fat droplets, thereby improving rheological properties and storage stabilities of PCEs.


Subject(s)
Alginates , Gum Arabic , Gum Arabic/chemistry , Carrageenan , Alginates/chemistry , Emulsions/chemistry , Plant Gums/chemistry , Rheology
12.
Nutrients ; 15(19)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37836498

ABSTRACT

Cardiovascular disease (CVD) is a leading cause of global mortality, and is considered one of diseases with the most rapid growth rate in China. Numerous studies have indicated a closed relationship between an increased incidence of CVD and dietary factors. Dietary fat is one of the three primary nutrients of consumption; however, high fat dietary in causing CVD has been neglected in some official dietary guidelines. Our present review has analyzed the relationship between dietary fat consumption and CVD in China over the past 30 years (from 1990 to 2019). There is a significant correlation between CVD incidence and mortality for consumption of both vegetable oils and animal fats, per capita consumption, and the relative weight of dietary fat exceeding that of other food ingredients (e.g., salt, fruit, and marine food). For fatty acid species, the proportion of ω6 fatty acid consumption increased, causing a significant increase in the ratios of ω6/ω3 fatty acids, whereas the proportion of monounsaturated fatty acid consumption decreased. Such changes have been considered a characteristic of dietary fat consumption in Chinese residents over the past 30 years, and are closely related to the incidence of CVD. Therefore, we suggest that the government should spread awareness regarding the consumption of dietary fat intake to prevent CVD and related health disorders. The public should be educated to avoid high fat diet and increase the intake of monounsaturated fatty acids and ω3 fatty acids.


Subject(s)
Cardiovascular Diseases , Fatty Acids, Omega-3 , Animals , Dietary Fats/adverse effects , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Cardiovascular Diseases/prevention & control , Fatty Acids , Fatty Acids, Monounsaturated , Diet, High-Fat , Risk Factors
13.
Foods ; 12(16)2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37628004

ABSTRACT

This meta-analysis aimed to investigate the impact of low-ratio linoleic acid/alpha-linolenic acid (LA/ALA) supplementation on the blood lipid profiles in adults. We conducted a systematic search for relevant randomized controlled trials (RCTs) assessing the effects of low-ratio LA/ALA using databases including PubMed, Embase, Cochrane, and Web of Science, as well as screened related references up until February 2023. The intervention effects were analyzed adopting weighted mean difference (WMD) and 95% confidence interval (CI). The meta-analysis indicated that low-ratio LA/ALA supplementation decreased total cholesterol (TC, WMD: -0.09 mmol/L, 95% CI: -0.17, -0.01, p = 0.031, I2 = 33.2%), low-density lipoprotein cholesterol (LDL-C, WMD: -0.08 mmol/L, 95% CI: -0.13, -0.02, p = 0.007, I2 = 0.0%), and triglycerides (TG, WMD: -0.05 mmol/L, 95% CI: -0.09, 0.00, p = 0.049, I2 = 0.0%) concentrations. There was no significant effect on high-density lipoprotein cholesterol concentration (HDL-C, WMD: -0.00 mmol/L, 95% CI: -0.02, 0.02, p = 0.895, I2 = 0.0%). Subgroup analysis showed that low-ratio LA/ALA supplementation significantly decreased plasma TC, LDL-C, and TG concentrations when the intervention period was less than 12 weeks. In the subgroup analysis, a noteworthy decrease in both TC and LDL-C levels was observed in individuals receiving low-ratio LA/ALA supplementation in the range of 1-5. These findings suggest that this specific range could potentially be effective in reducing lipid profiles. The findings of this study provide additional evidence supporting the potential role of low-ratio LA/ALA supplementation in reducing TC, LDL-C, and TG concentrations, although no significant impact on HDL-C was observed.

14.
J Oleo Sci ; 72(8): 745-754, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37468273

ABSTRACT

Although partially hydrogenated oil (PHO) provides foods with outstanding thick tastes and pronounced "creamy" flavor, the high level of artificial trans-fatty acids (TFA; about 30%) limits its usages around the world in the near future. It is necessary to produce trans-free alternatives with similar tastes to PHO. The relationship between sensory attributes and physicochemical characteristics of PHO and four typical specialty fats were therefore analyzed in the present study. PHO exhibited the highest greasiness score (8.19), accompanying by mild creaminess and aftertaste as well as a weak coolness during swallow, which were resulted from the close-packed arrangements of TFA, its cis-counterparts and other long chain fatty acids. None of artificial trans-fats, mainly anhydrous milk fat, cocoa butter, and coconut oil and its fully hydrogenated counterpart, were similar to PHO in terms of these sensory attributes. The unique fatty acid species of PHO and their arrangements contributed to the relatively smooth solid fat content profile and melting-crystallization curve, as well as forming uniform and dense ß' crystal-structures (Db=1.80). The Pearson correlation analyses relevelled that long chain fatty acids, e.g., t-C18:1 and C18:1, and melting final temperatures were generally positive correlated with greasiness, creaminess and aftertaste; whereas these indices were negatively correlated with coolness. The melting enthalpy was highly connected with coolness, which reflected the endothermic effectiveness during the melting process of fats in the mouth. These indices screened by correlation analyses that were strongly correlated with sensory attributes could provide references for producing trans-free alternatives.


Subject(s)
Plant Oils , Trans Fatty Acids , Plant Oils/chemistry , Dietary Fats , Fatty Acids/analysis , Fats , Coconut Oil , Trans Fatty Acids/analysis
15.
Food Chem ; 426: 136617, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37336098

ABSTRACT

Rapeseed oil, as one of the three major vegetable oils in the world, its matrix effect makes the decoding flavor a challenge. Solid-phase microextraction (SPME), SPME-Arrow, headspace stir bar sorptive extraction (HSSE), direct thermal desorption (DTD), and solvent-assisted flavor evaporation (SAFE) were compared based on the odorants in hot-pressed rapeseed oil. Besides, methodological validation for 31 aroma standards was conducted to compare reliability and robustness of these approaches. DTD showed the largest proportion of acids, while the other techniques extracted a majority of nitriles. The highest number of odorants was detected by SAFE (31), followed by HSSE (30), SPME-Arrow (30), SPME (24), and DTD (14). SPME-Arrow showed the best performance in linearity, recovery, and reproducibility followed by SPME, HSSE, DTD, and SAFE. Results reveal the advantages and limitations of diverse methodologies and provide valuable insights for the selection of extraction methods in an oil matrix and flavor decoding.


Subject(s)
Odorants , Volatile Organic Compounds , Odorants/analysis , Rapeseed Oil , Gas Chromatography-Mass Spectrometry/methods , Reproducibility of Results , Solid Phase Microextraction/methods , Solvents , Volatile Organic Compounds/analysis
16.
Foods ; 12(11)2023 May 25.
Article in English | MEDLINE | ID: mdl-37297374

ABSTRACT

Th aim of this meta-analysis was to elucidate whether dietary linoleic acid (LA) supplementation affected blood lipid profiles, including triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C), compared with other fatty acids. Embase, PubMed, Web of Science and the Cochrane Library databases, updated to December 2022, were searched. The present study employed weighted mean difference (WMD) and a 95% confidence interval (CI) to examine the efficacy of the intervention. Out of the 3700 studies identified, a total of 40 randomized controlled trials (RCTs), comprising 2175 participants, met the eligibility criteria. Compared with the control group, the dietary intake of LA significantly decreased the concentrations of LDL-C (WMD: -3.26 mg/dL, 95% CI: -5.78, -0.74, I2 = 68.8%, p = 0.01), and HDL-C (WMD: -0.64 mg/dL, 95% CI: -1.23, -0.06, I2 = 30.3%, p = 0.03). There was no significant change in the TG and TC concentrations. Subgroup analysis showed that the LA intake was significantly reduced in blood lipid profiles compared with saturated fatty acids. The effect of LA on lipids was not found to be dependent on the timing of supplementation. LA supplementation in an excess of 20 g/d could be an effective dose for lowering lipid profiles. The research results provide further evidence that LA intake may play a role in reducing LDL-C and HDL-C, but not TG and TC.

17.
Food Chem ; 426: 136466, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37352711

ABSTRACT

Cephalotaxus fortunei, a potential underutilized oil resource, contains various active ingredients that exert positive effects on human health. In the present study, characteristics of C. fortunei kernel oil and its digestion properties were systematically investigated. Results indicated that C. fortunei kernels contained high oil content (64.59%), of which over 90% was triacylglycerols (TAGs). The kernel oil was rich in oleic acid (C18:1n-9, 42.88%), linoleic acid (C18:2n-6, 31.05%), and sciadonic acid (C20:3n-6, 10.78%). The kernel oil also contained some beneficial fat-soluble nutrients, such as tocopherols (143 mg/kg) and phytosterols (1474 mg/kg). Thirty-five kinds of TAGs were identified, among which O-O-L (17.96%), O-O-O (12.12%), L-L-O (11.79%), O-L-Et (8.59%), and O-O-Et (8.76%) were the most abundant. In vitro digestion experiments showed that after 120 min of small intestine digestion, the maximum FFAs release level of the kernel oil was 75.02%, which was lower than that of soybean oil (89.63%).


Subject(s)
Cephalotaxus , Humans , Soybean Oil , Fatty Acids, Nonesterified , Triglycerides , Digestion , Fatty Acids , Plant Oils
18.
Food Funct ; 14(12): 5631-5643, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37233209

ABSTRACT

Homogenization is used in human milk to add supplements for premature infants and in cow's milk to make it more uniform and stable for commercial purposes. However, it may destroy the milk fat globule (MFG) structure and composition, affecting its functional characteristics. This study aims to compare human and cow's milk with particle size ranges of 4-6 µm (large-sized), 1-2 µm (medium-sized), and 0.3-0.5 µm (small-sized) before and after homogenization at different pressure levels. CLSM and SDS-PAGE were used to perform the structural characterization. The lipid compositions were analyzed using GC and LC-MS. The results showed that homogenization obviously changed the MFG structure and its lipid composition. After homogenization, more caseins and whey proteins were adsorbed on both the human and cow's milk fat globule interface, while the proteins observed in human milk were dispersed. This could be attributed to the different types and contents of proteins initially. The influence of homogenization on milk phospholipids was higher than triacylglycerols and fatty acids, which was highly correlated with their initial distributions in MFGs. These results provide new information about the interfacial composition of human and cow's milk fat globules upon homogenization and establish the scientific basis for homogenization application in human and cow's milk to help explore their potential functions.


Subject(s)
Fatty Acids , Milk, Human , Milk , Animals , Cattle , Female , Humans , Infant , Allergens , Caseins , Milk Proteins , Phospholipids , Whey Proteins
19.
Food Funct ; 14(12): 5589-5605, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37222564

ABSTRACT

This study analyzed total fatty acids (FAs) and their sn-2 positional distribution in triacylglycerol (TAG) in breast milk (n = 300) from three lactational stages in five regions of China, and further investigated their association with the effect of the type of edible oil consumed by lactating mothers. A total of 33 FAs including 12 saturated fatty acids (SFAs), 8 monounsaturated fatty acids (MUFAs), and 13 polyunsaturated fatty acids (PUFAs) were determined using GC. Breast milk from different regions showed significant differences in MUFAs, sn-2 MUFAs, and PUFAs (P < 0.01, P < 0.001, and P < 0.001). The results showed that 10 : 0, 18 : 0, 18 : 1 n-9, 18 : 2 n-6 (LA), and 18 : 3 n-3 (ALA) were mainly esterified at the sn-1 and sn-3 positions; 20 : 4 n-6 (ARA) seemed homogeneously esterified at all sn-positions in TAG, while 14 : 0, 16 : 0, and 22 : 6 n-3 (DHA) were primarily esterified at the sn-2 position. In breast milk, major FAs (16 : 0, 18 : 1 n-9, LA, and ALA) and the ratio of PUFAs (LA/ALA and n-6/n-3) were obviously influenced by maternal edible oils. Breast milk from mothers consuming rapeseed oil had the lowest LA (∼19%) and the highest ALA (∼1.9%). The MUFAs, especially 18 : 1 n-9, in breast milk from mothers consuming high oleic acid oils were significantly higher than those in breast milk from mothers consuming other types of edible oils. These results provide a potential nutritional strategy for better breastfeeding by specifically adjusting maternal edible oils despite other fat sources being part of the diet of lactating women.


Subject(s)
Fatty Acids , Milk, Human , Humans , Female , Lactation , Fatty Acids, Unsaturated , Diet , Fatty Acids, Monounsaturated , Triglycerides , Rapeseed Oil
20.
Crit Rev Food Sci Nutr ; : 1-28, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37222574

ABSTRACT

Literature is inconsistent regarding the effects of omega-3 polyunsaturated fatty acids (omega-3 PUFAs) supplementation on patients with metabolic syndrome (MetS) and related cardiovascular diseases (CVDs). Therefore, the aim of this systematic review and meta-analysis is to summarize data from available randomized controlled trials (RCTs) on the effect of omega-3 PUFAs on lipid profiles, blood pressure, and inflammatory markers. We systematically searched PubMed, Embase, and Cochrane Library databases to identify the relevant RCTs until 1 November 2022. Weighed mean difference (WMD) was combined using a random-effects model. Standard methods were applied to assess publication bias, sensitivity analysis, and heterogeneity among included studies. A total of 48 RCTs involving 8,489 subjects met the inclusion criteria. The meta-analysis demonstrated that omega-3 PUFAs supplementation significantly reduced triglyceride (TG) (WMD: -18.18 mg/dl; 95% CI: -25.41, -10.95; p < 0.001), total cholesterol (TC) (WMD: -3.38 mg/dl; 95% CI: -5.97, -0.79; p = 0.01), systolic blood pressure (SBP) (WMD: -3.52 mmHg; 95% CI: -5.69, -1.35; p = 0.001), diastolic blood pressure (DBP) (WMD: -1.70 mmHg; 95% CI: -2.88, -0.51; p = 0.005), interleukin-6 (IL-6) (WMD: -0.64 pg/ml; 95% CI: -1.04, -0.25; p = 0.001), tumor necrosis factor-α (TNF-α) (WMD: -0.58 pg/ml; 95% CI: -0.96, -0.19; p = 0.004), C-reactive protein (CRP) (WMD: -0.32 mg/l; 95% CI: -0.50, -0.14; p < 0.001), and interleukin-1 (IL-1) (WMD: -242.95 pg/ml; 95% CI: -299.40, -186.50; p < 0.001), and significantly increased in high-density lipoprotein (HDL) (WMD: 0.99 mg/dl; 95% CI: 0.18, 1.80; p = 0.02). However, low-density lipoprotein (LDL), monocyte chemoattractant protein-1 (MCP-1), intracellular adhesion molecule-1 (ICAM-1), and soluble endothelial selectin (sE-selectin) were not affected. In subgroup analyses, a more beneficial effect on overall health was observed when the dose was ≤ 2 g/day; Omega-3 PUFAs had a stronger anti-inflammatory effect in patients with CVDs, particularly heart failure; Supplementation with omega-3 PUFAs was more effective in improving blood pressure in MetS patients and blood lipids in CVDs patients, respectively. Meta-regression analysis showed a linear relationship between the duration of omega-3 PUFAs and changes in TG (p = 0.023), IL-6 (p = 0.008), TNF-α (p = 0.005), and CRP (p = 0.025). Supplementation of omega-3 PUFAs had a favorable effect on improving TG, TC, HDL, SBP, DBP, IL-6, TNF-α, CRP, and IL-1 levels, yet did not affect LDL, MCP-1, ICAM-1, and sE-selectin among patients with MetS and related CVDs.

SELECTION OF CITATIONS
SEARCH DETAIL
...