Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 4573, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29545562

ABSTRACT

The trends of both rainfall and circulation strength of the Indian summer monsoon has been reviving since 2002. Here, using observational data, we demonstrate a statistically significant greening over the Northwest Indian Subcontinent and a consequent decline in dust abundance due to the monsoon revival. The enhanced monsoonal rainfall causes an increase in soil moisture, which results in a significant greening in the Northwest Indian Subcontinent. These increases in rainfall, soil moisture, and vegetation together lead to a substantial reduction of the dust abundance in this region, especially the Thar Desert, as shown by a negative trend in satellite-retrieved aerosol optical depth. The monsoonal rainfall-induced trends in vegetation growth and dust abundance in the Northwest Indian Subcontinent have important implications for agriculture production and air quality given the projected increases and a westward expansion of the global summer monsoon rainfall at the end of this century.

2.
Sci Rep ; 6: 30690, 2016 07 28.
Article in English | MEDLINE | ID: mdl-27465689

ABSTRACT

The absorptive properties of dust aerosols largely determine the magnitude of their radiative impacts on the climate system. Currently, climate models use globally constant values of dust imaginary refractive index (IRI), a parameter describing the dust absorption efficiency of solar radiation, although it is highly variable. Here we show with model experiments that the dust-induced Indian summer monsoon (ISM) rainfall differences (with dust minus without dust) change from -9% to 23% of long-term climatology as the dust IRI is changed from zero to the highest values used in the current literature. A comparison of the model results with surface observations, satellite retrievals, and reanalysis data sets indicates that the dust IRI values used in most current climate models are too low, tending to significantly underestimate dust radiative impacts on the ISM system. This study highlights the necessity for developing a parameterization of dust IRI for climate studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...