Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
1.
Australas J Dermatol ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38726851

ABSTRACT

Mycosis fungoides (MF) is a low-grade malignant cutaneous T-cell lymphoma that originates from memory T cells. It typically follows a unique and relatively indolent disease course. MF is used to be characterized by a tissue-resident memory T cell (TRM) phenotype, although recent molecular research has revealed its complexity, casting doubt on the cell of origin and the TRM-MF paradigm. Recent clonal heterogeneity studies suggest that MF may originate from immature early precursor T cells. During development, the tumour microenvironment (TME) influences tumour cell phenotype. The exact origin and development trajectory of MF remains elusive. Clarifying the origin of MF cells is vital for accurate diagnosis and effective treatment.

2.
Biomaterials ; 310: 122631, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38815457

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) presents a formidable clinical challenge due to its intricate microenvironment characterized by desmoplasia and complex tumor-stroma interactions. Conventional models hinder studying cellular crosstalk for therapeutic development. To recapitulate key features of PDAC masses, this study creates a novel sea-and-island PDAC tumor construct (s&i PTC). The s&i PTC consists of 3D-printed islands of human PDAC cells positioned within an interstitial extracellular matrix (ECM) populated by human cancer-associated fibroblasts (CAFs). This design closely mimics the in vivo desmoplastic architecture and nutrient-poor conditions. The model enables studying dynamic tumor-stroma crosstalk and signaling reciprocity, revealing both known and yet-to-be-discovered multicellular metabolic adaptations. Using the model, we discovered the orchestrated dynamic alterations of CAFs under nutrient stress, resembling critical in vivo human tumor niches, such as the secretion of pro-tumoral inflammatory factors. Additionally, nutrient scarcity induces dynamic alterations in the ECM composition and exacerbates poor cancer cell differentiation-features well-established in PDAC progression. Proteomic analysis unveiled the enrichment of proteins associated with aggressive tumor behavior and ECM remodeling in response to poor nutritional conditions, mimicking the metabolic stresses experienced by avascular pancreatic tumor cores. Importantly, the model's relevance to patient outcomes is evident through an inverse correlation between biomarker expression patterns in the s&i PTCs and PDAC patient survival rates. Key findings include upregulated MMPs and key ECM proteins (such as collagen 11 and TGFß) under nutrient-avid conditions, known to be regulated by CAFs, alongside the concomitant reduction in E-cadherin expression associated with a poorly differentiated PDAC state under nutrient deprivation. Furthermore, elevated levels of hyaluronic acid (HA) and integrins in response to nutrient deprivation underscore the model's fidelity to the PDAC microenvironment. We also observed increased IL-6 and reduced α-SMA expression under poor nutritional conditions, suggesting a transition of CAFs from myofibroblastic to inflammatory phenotypes under a nutrient stress akin to in vivo niches. In conclusion, the s&i PTC represents a significant advancement in engineering clinically relevant 3D models of PDAC masses. It offers a promising platform for elucidating tumor-stroma interactions and guiding future therapeutic strategies to improve patient outcomes.

3.
Eur J Neurosci ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711280

ABSTRACT

Gastrodin, an anti-inflammatory herbal agent, is known to suppress microglia activation. Here, we investigated whether it would exert a similar effect in reactive astrocytes and whether it might act through the renin-angiotensin system (RAS) and sirtuin 3 (SIRT3). Angiotensinogen (ATO), angiotensin-converting enzyme (ACE), angiotensin II type 1 (AT1) and type 2 (AT2) receptor and SIRT3 expression was detected in TNC-1 astrocytes treated with BV-2 microglia conditioned medium (CM) with or without gastrodin and lipopolysaccharide (LPS) pre-treatment by RT-PCR, immunofluorescence and western blotting analysis. Expression of C3 (A1 astrocyte marker), S100A10 (A2 astrocyte marker), proinflammatory cytokines and neurotrophic factors was then evaluated. The results showed a significant increase of ATO, ACE, AT1, SIRT3, C3, proinflammatory cytokines and neurotrophic factors expression in TNC-1 astrocytes incubated in CM + LPS when compared with cells incubated in the CM, but AT2 and S100A10 expression was reduced. TNC-1 astrocytes responded vigorously to BV-2 CM treated with gastrodin + LPS as compared with the control. This was evident by the decreased expression of the abovementioned protein markers, except for AT2 and S100A10. Interestingly, SIRT3, IGF-1 and BDNF expression was enhanced, suggesting that gastrodin inhibited the expression of RAS and proinflammatory mediators but promoted the expression of neurotrophic factors. And gastrodin regulated the phenotypic changes of astrocytes through AT1. Additionally, azilsartan (a specific inhibitor of AT1) inhibited the expression of C3 and S100A10, which remained unaffected in gastrodin and azilsartan combination treatment. These findings provide evidence that gastrodin may have a therapeutic effect via regulating RAS-SIRT3.

5.
Sci Rep ; 14(1): 7039, 2024 03 25.
Article in English | MEDLINE | ID: mdl-38528036

ABSTRACT

Acral melanoma (AM) is a subtype of melanoma with high prevalence in East Asians. AM is characterized by greater aggressiveness and lower survival rates. However, there are still fewer studies on immune mechanisms of AM especially subungual melanoma (SM) versus non-subungual melanoma (NSM). In order to explore tumor heterogeneity and immune microenvironment in different subtypes of AM, we applied single-cell RNA sequencing to 24,789 single cells isolated from the SM and plantar melanoma (PM) patients. Aspects of tumor heterogeneity, melanocytes from PM and SM had significant differences in gene expression, CNV and pathways in which tumor-associated such as NF-kb and Wnt were involved. Regarding the immune microenvironment, PM contained more fibroblasts and T/NK cells. The EPHA3-EFNA1 axis was expressed only in cancer-associated fibroblast (CAF) and melanocytes of PM, and the TIGIT-NECTIN2 axis was expressed in both AM subtypes of T/NK cells and melanocytes. Altogether, our study helps to elucidate the tumor heterogeneity in AM subpopulations and provides potential therapeutic targets for clinical research.


Subject(s)
Melanoma , Nail Diseases , Skin Neoplasms , Humans , Melanoma/pathology , Skin Neoplasms/pathology , Melanocytes/metabolism , Nail Diseases/pathology , Sequence Analysis, RNA , Tumor Microenvironment/genetics
6.
Adv Healthc Mater ; 13(3): e2302275, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37885129

ABSTRACT

A 3D microenvironment is known to endorse pancreatic islet development from human induced pluripotent stem cells (iPSCs). However, oxygen supply becomes a limiting factor in a scaffold culture. In this study, oxygen-releasing biomaterials are fabricated and an oxygenated scaffold culture platform is developed to offer a better oxygen supply during 3D iPSC pancreatic differentiation. It is found that the oxygenation does not alter the scaffold's mechanical properties. The in situ oxygenation improves oxygen tension within the scaffolds. The unique 3D differentiation system enables the generation of islet organoids with enhanced expression of islet signature genes and proteins. Additionally, it is discovered that the oxygenation at the early stage of differentiation has more profound impacts on islet development from iPSCs. More C-peptide+ /MAFA+ ß and glucagon+ /MAFB+ α cells formed in the iPSC-derived islet organoids generated under oxygenated conditions, suggesting enhanced maturation of the organoids. Furthermore, the oxygenated 3D cultures improve islet organoids' sensitivity to glucose for insulin secretion. It is herein demonstrated that the oxygenated scaffold culture empowers iPSC islet differentiation to generate clinically relevant tissues for diabetes research and treatment.


Subject(s)
Induced Pluripotent Stem Cells , Insulin-Secreting Cells , Islets of Langerhans , Humans , Insulin/metabolism , Cell Differentiation , Oxygen/metabolism
7.
Mol Neurobiol ; 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37930585

ABSTRACT

Activated microglia and their mediated inflammatory responses play an important role in the pathogenesis of hypoxic-ischemic brain damage (HIBD). Therefore, regulating microglia activation is considered a potential therapeutic strategy. The neuroprotective effects of gastrodin were evaluated in HIBD model mice, and in oxygen glucose deprivation (OGD)-treated and lipopolysaccharide (LPS)activated BV-2 microglia cells. The potential molecular mechanism was investigated using western blotting, immunofluorescence labeling, quantitative realtime reverse transcriptase polymerase chain reaction, and flow cytometry. Herein, we found that PI3K/AKT signaling can regulate Sirt3 in activated microglia, but not reciprocally. And gastrodin exerts anti-inflammatory and antiapoptotic effects through the PI3K/AKT-Sirt3 signaling pathway. In addition, gastrodin could promote FOXO3a phosphorylation, and inhibit ROS production in LPSactivated BV-2 microglia. Moreover, the level P-FOXO3a decreased significantly in Sirt3-siRNA group. However, there was no significant change after gastrodin and siRNA combination treatment. Notably, gastrodin might also affect the production of ROS in activated microglia by regulating the level of P-FOXO3a via Sirt3. Together, this study highlighted the neuroprotective role of PI3K/AKT-Sirt3 axis in HIBD, and the anti-inflammatory, anti-apoptotic, and anti-oxidative stress effects of gastrodin on HIBD.

8.
Exploration (Beijing) ; 3(5): 20230047, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37933286

ABSTRACT

In recent years, cannabidiol (CBD), a non-psychotropic cannabinoid, has garnered substantial interest in drug development due to its broad pharmacological activity and multi-target effects. Diabetes is a chronic metabolic disease that can damage multiple organs in the body, leading to the development of complications such as abnormal kidney function, vision loss, neuropathy, and cardiovascular disease. CBD has demonstrated significant therapeutic potential in treating diabetes mellitus and its complications owing to its various pharmacological effects. This work summarizes the role of CBD in diabetes and its impact on complications such as cardiovascular dysfunction, nephropathy, retinopathy, and neuropathy. Strategies for discovering molecular targets for CBD in the treatment of diabetes and its complications are also proposed. Moreover, ways to optimize the structure of CBD based on known targets to generate new CBD analogues are explored.

9.
J Med Chem ; 66(16): 11498-11516, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37531582

ABSTRACT

Opioid addiction is a chronically relapsing disorder that causes critical public health problems. Currently, there is a lack of effective drug treatment. Herein, one cannabidiol derivative, CIAC001, was discovered as an effective agent for treating morphine-induced addiction. In vitro, CIAC001 exhibited significantly improved anti-neuroinflammatory activity with lower toxicity. In vivo, CIAC001 ameliorated the morphine-induced withdrawal reaction, behavioral sensitization, and conditional position preference by inhibiting morphine-induced microglia activation and neuroinflammation. Target fishing for CIAC001 by activity-based protein profiling led to the identification of pyruvate kinase M2 (PKM2) as the target protein. CIAC001 bound to the protein-protein interface of the PKM2 dimer and promoted the tetramerization of PKM2. Moreover, CIAC001 exhibited an anti-neuroinflammatory effect by reversing the decrease of the PKM2 tetramer and inhibiting the nuclear translocation of PKM2. In summary, this study identified CIAC001 as a lead compound in targeting PKM2 to treat morphine-induced addiction.


Subject(s)
Cannabidiol , Pyruvate Kinase , Pyruvate Kinase/metabolism , Protein Transport , Morphine Derivatives
10.
J Tissue Eng ; 14: 20417314231185858, 2023.
Article in English | MEDLINE | ID: mdl-37435573

ABSTRACT

Induced pluripotent stem cells (iPSCs) have enormous potential in producing human tissues endlessly. We previously reported that type V collagen (COL5), a pancreatic extracellular matrix protein, promotes islet development and maturation from iPSCs. In this study, we identified a bioactive peptide domain of COL5, WWASKS, through bioinformatic analysis of decellularized pancreatic ECM (dpECM)-derived collagens. RNA-sequencing suggests that WWASKS induces the formation of pancreatic endocrine progenitors while suppressing the development of other types of organs. The expressions of hypoxic genes were significantly downregulated in the endocrine progenitors formed under peptide stimulation. Furthermore, we unveiled an enhancement of iPSC-derived islets' (i-islets) glucose sensitivity under peptide stimulation. These i-islets secrete insulin in a glucose responsive manner. They were comprised of α, ß, δ, and γ cells and were assembled into a tissue architecture similar to that of human islets. Mechanistically, the peptide is able to activate the canonical Wnt signaling pathway, permitting the translocation of ß-catenin from the cytoplasm to the nucleus for pancreatic progenitor development. Collectively, for the first time, we demonstrated that an ECM-derived peptide dictates iPSC fate toward the generation of endocrine progenitors and subsequent islet organoids.

11.
Cells ; 12(10)2023 05 22.
Article in English | MEDLINE | ID: mdl-37408278

ABSTRACT

Pluripotent stem cells are endless sources for in vitro engineering human tissues for regenerative medicine. Extensive studies have demonstrated that transcription factors are the key to stem cell lineage commitment and differentiation efficacy. As the transcription factor profile varies depending on the cell type, global transcriptome analysis through RNA sequencing (RNAseq) has been a powerful tool for measuring and characterizing the success of stem cell differentiation. RNAseq has been utilized to comprehend how gene expression changes as cells differentiate and provide a guide to inducing cellular differentiation based on promoting the expression of specific genes. It has also been utilized to determine the specific cell type. This review highlights RNAseq techniques, tools for RNAseq data interpretation, RNAseq data analytic methods and their utilities, and transcriptomics-enabled human stem cell differentiation. In addition, the review outlines the potential benefits of the transcriptomics-aided discovery of intrinsic factors influencing stem cell lineage commitment, transcriptomics applied to disease physiology studies using patients' induced pluripotent stem cell (iPSC)-derived cells for regenerative medicine, and the future outlook on the technology and its implementation.


Subject(s)
Induced Pluripotent Stem Cells , Pluripotent Stem Cells , Humans , Regenerative Medicine , Transcriptome/genetics , Cell Differentiation/genetics , Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/metabolism , Transcription Factors/metabolism
12.
Am J Cancer Res ; 13(4): 1407-1424, 2023.
Article in English | MEDLINE | ID: mdl-37168333

ABSTRACT

(-)-Epigallocatechin-3-gallate (EGCG) is the primary active ingredient in green tea and has been used for cancer prevention in clinical trials. The anti-tumor effects of EGCG stem from its ability to inhibit the activities of many oncoproteins, such as AKT, VEGFR, STAT3, and mutant p53. However, the clinical efficacy of EGCG is unsatisfactory. How to improve the anti-tumor effects of EGCG is an open question. Here we report that EGCG inhibits the tumor suppressive Hippo signaling pathway and activates downstream YAP in colorectal cancer (CRC) cells. Activation of YAP impedes the anti-tumor effects of EGCG. YAP blockade increases the sensitivity of CRC cells to EGCG treatment.

13.
Brain Behav Immun ; 111: 365-375, 2023 07.
Article in English | MEDLINE | ID: mdl-37196785

ABSTRACT

Microglia is a heterogeneous population that mediates neuroinflammation in the central nervous system (CNS) and plays a crucial role in developing neuropathic pain. FKBP5 facilitates the assembly of the IκB kinase (IKK) complex for the activation of NF-κB, which arises as a novel target for treating neuropathic pain. In this study, cannabidiol (CBD), a main active component of Cannabis, was identified as an antagonist of FKBP5. In vitro protein intrinsic fluorescence titration showed that CBD directly bound to FKBP5. Cellular thermal shift assay (CETSA) indicated that CBD binding increased the FKBP5 stability, which implies that FKBP5 is the endogenous target of CBD. CBD was found to inhibit the assembly of the IKK complex and the activation of NF-κB, therefore blocking LPS-induced NF-κB downstream pro-inflammatory factors NO, IL-1ß, IL-6 and TNF-α. Stern-Volmer analysis and protein thermal shift assay revealed that tyrosine 113 (Y113) of FKBP5 was critical for FKBP5 interacting with CBD, which is consistent with in silico molecular docking simulation. FKBP5 Y113 mutation (Y113A) alleviated the effect of CBD inhibiting LPS-induced pro-inflammatory factors overproduction. Furthermore, systemic administration of CBD inhibited chronic constriction injury (CCI)-induced microglia activation and FKBP5 overexpression in lumbar spinal cord dorsal horn. These data imply that FKBP5 is an endogenous target of CBD.


Subject(s)
Cannabidiol , Neuralgia , Tacrolimus Binding Proteins , Animals , Rats , Cannabidiol/pharmacology , Lipopolysaccharides/pharmacology , Molecular Docking Simulation , Neuralgia/drug therapy , Neuralgia/metabolism , Neuroinflammatory Diseases , NF-kappa B/metabolism , Rats, Sprague-Dawley , Tacrolimus Binding Proteins/antagonists & inhibitors
14.
J Phys Chem B ; 127(12): 2671-2682, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36926920

ABSTRACT

Improving protein thermostability in mutagenesis-based enzyme engineering was often achieved by enhancing interresidue interactions via mutation to increase the enthalpy penalty of unfolding. However, this approach may trade off the functional activity due to the loss of structural flexibility of the biomolecule. Here, by performing X-ray crystallography, enzymatic kinetic experiments, neutron scattering, and thermodynamical measurements, we compared the structures, catalytic behaviors, dynamics, and thermostability between a wild-type creatinase and its four-point mutant. We found that the mutant is an entropy-driven thermostable protein with higher structural flexibility, i.e., higher conformational entropy, in the folded state compared to the wild type. The increased conformational entropy of the mutant in the folded state can reduce the entropy gain during unfolding and thus renders it greater thermostability. Moreover, the increased structural flexibility, particularly around the catalytic site, can broaden the mutant's working temperature range and considerably improve its activity at ambient conditions, which is crucial for its application in diagnosing kidney diseases. Complementary all-atom molecular dynamics simulations indicated that the four mutations replaced several of the strong interresidue interactions (electrostatic interactions and hydrogen bonds) with weak hydrophobic interactions. These substitutions not only release the structural flexibility to promote the thermostability and enzymatic activity of the protein but they also preserve the protein structure from collapsing. Our findings may pave a route for the entropy-driven strategy to design proteins with high thermostability and activity.


Subject(s)
Entropy , Temperature , Enzyme Stability , Thermodynamics
15.
FASEB J ; 37(2): e22735, 2023 02.
Article in English | MEDLINE | ID: mdl-36583706

ABSTRACT

Cannabidivarin (CBDV), a structural analog of cannabidiol (CBD), has received attention in recent years owing to its anticonvulsant property and potential for treating autism spectrum disorder. However, the function and mechanism of CBDV involved in the progression of Parkinson's disease (PD) remain unclear. In this work, we found that CBDV inhibited α-synuclein (α-syn) aggregation in an established transgenetic Caenorhabditis elegans (C. elegans). The phenolic hydroxyl groups of CBDV are critical for scavenging reactive oxygen species (ROS), reducing the in vivo aggregation of α-syn and preventing DAergic neurons from 6-hydroxydopamine (6-OHDA)-induced injury and degeneration. By combining multiple biophysical approaches, including nuclear magnetic resonance spectrometry, transmission electron microscopy and fibrillation kinetics assays, we confirmed that CBDV does not directly interact with α-syn or inhibit the formation of α-syn fibrils in vitro. Further cellular signaling investigation showed that the ability of CBDV to prevent oxidative stress, the accumulation of α-syn and the degeneration of DAergic neurons was mediated by DAF-16 in the worms. This study demonstrates that CBDV alleviates the aggregation of α-syn in vivo and reveals that the phenolic hydroxyl groups of CBDV are critical for this activity, providing a potential for the development of CBDV as a drug candidate for PD therapeutics.


Subject(s)
Autism Spectrum Disorder , Caenorhabditis elegans Proteins , Cannabinoids , Parkinson Disease , Animals , alpha-Synuclein , Caenorhabditis elegans , Parkinson Disease/drug therapy , Parkinson Disease/pathology , Oxidopamine , Caenorhabditis elegans Proteins/genetics , Forkhead Transcription Factors
16.
Front Psychiatry ; 13: 1003491, 2022.
Article in English | MEDLINE | ID: mdl-36245877

ABSTRACT

Interference control function is a key function in a series of specific functions of working memory (WM), which is usually impaired in patients with major depressive disorder (MDD). Event-related potentials (ERPs) have advantages in exploring the neural processing of interference control and WM impairment, and therefore, it is helpful to further understand the neural mechanism of MDD. In the present study, 44 patients with MDD and 44 age- and sex-matched healthy controls (HCs) were recruited. All participants completed a 4-gradient difficulty Brown-Peterson task (BPT), whose difficulty was manipulated by changing the demand of interspersed distraction tasks. High-density EEG was simultaneously recorded. The hit rate and reaction time (RT) toward the target stimulus as well as the underlying ERP features were analyzed. The results showed that, when compared with HCs, MDD patients had significantly lower hit rates and longer RTs among all four difficulties of BPT. For ERP components, no significant between-group difference was found in either N100 or P200 average amplitudes; however, the centroparietal late positive potential (LPP) amplitude of both MDD group and HC group decreased with the increase of BPT difficulty, despite the pattern of the HC group was relative moderate. For both groups, the LPP amplitude was significantly smaller in high-order difficult BPT tasks than in low-order difficult tasks. Moreover, LPP amplitude in high-order difficult tasks was much smaller in MDD group than that of HC group. Our findings suggest that failure to control interference well may play a critical role in the impairment of WM in patients with MDD, and provided new evidence that the neural correlates of interference control dysfunction of WM in MDD.

17.
Front Psychiatry ; 13: 989924, 2022.
Article in English | MEDLINE | ID: mdl-36147969

ABSTRACT

Abnormal cognitive conflict resolution has been considered as a critical element of executive dysfunctions inpatient with major depression (MD). Further clarifying whether there was a deficit at perceptual encoding stage or the early response-execution stage in conflict control function by event-related potential (ERP) technique in MD would be helpful in understanding the neural mechanism of MD. Participants included twenty-six depressed patients and twenty-six healthy controls (HCs). All participants measured with Hamilton Depression Scale (17-item edition, HAMD) and a Simon task. Electroencephalograms were synchronously recorded when performing the Simon task. The method of residue iteration decomposition was used to analyze the lateralized readiness potential (LRP) and P300 components, which contributed to divides ERP components into a stimulus-locked component (S-cluster), a response-locked component (R-cluster) and an intermediate component cluster (C-cluster) by using latency variability and time markers. Results showed that reactive times (RTs) for both groups were fastest in congruent trials, and slowest in incongruent trials; however, there is no difference in RTs under the three conditions between two groups. Accuracy Rate (ACC) for both groups were the highest in neutral trials, and the lowest in incongruent trials; ACC in MD group were all lower than that of HC group under three conditions. ERP data analyses showed that depressed patients had a deficit in activating the correct response, as reflected by reduced amplitudes of R-LRP, but no abnormality in LRP-S and P300-C. In conclusion, patients with MD present conflict control dysfunction (i.e., abnormal cognitive conflict resolution) at the early response-execution stage, not at perceptual encoding stage, which may be reflected by the reduced R-LRP amplitudes. The abnormal cognitive conflict resolution in activating the correct response might constitute an interesting treatment target.

18.
Front Bioeng Biotechnol ; 10: 913579, 2022.
Article in English | MEDLINE | ID: mdl-35782492

ABSTRACT

Bioprinting enables the fabrication of complex, heterogeneous tissues through robotically-controlled placement of cells and biomaterials. It has been rapidly developing into a powerful and versatile tool for tissue engineering. Recent advances in bioprinting modalities and biofabrication strategies as well as new materials and chemistries have led to improved mimicry and development of physiologically relevant tissue architectures constituted with multiple cell types and heterogeneous spatial material properties. Machine learning (ML) has been applied to accelerate these processes. It is a new paradigm for bioprinting. In this review, we explore current trends in bioink formulation and how ML has been used to accelerate optimization and enable real-time error detection as well as to reduce the iterative steps necessary for bioink formulation. We examined how rheometric properties, including shear storage, loss moduli, viscosity, shear-thinning property of biomaterials affect the printability of a bioink. Furthermore, we scrutinized the interplays between yield shear stress and the printability of a bioink. Moreover, we systematically surveyed the application of ML in precision in situ surgical site bioprinting, closed-loop AI printing, and post-printing optimization.

19.
Nucleic Acids Res ; 50(14): 8321-8330, 2022 08 12.
Article in English | MEDLINE | ID: mdl-35871295

ABSTRACT

AlpA positively regulates a programmed cell death pathway linked to the virulence of Pseudomonas aeruginosa by recognizing an AlpA binding element within the promoter, then binding RNA polymerase directly and allowing it to bypass an intrinsic terminator positioned downstream. Here, we report the single-particle cryo-electron microscopy structures of both an AlpA-loading complex and an AlpA-loaded complex. These structures indicate that the C-terminal helix-turn-helix motif of AlpA binds to the AlpA binding element and that the N-terminal segment of AlpA forms a narrow ring inside the RNA exit channel. AlpA was also revealed to render RNAP resistant to termination signals by prohibiting RNA hairpin formation in the RNA exit channel. Structural analysis predicted that AlpA, 21Q, λQ and 82Q share the same mechanism of transcription antitermination.


Subject(s)
Bacterial Proteins , DNA-Directed RNA Polymerases , RNA-Binding Proteins , Transcription, Genetic , Bacterial Proteins/metabolism , Cryoelectron Microscopy , DNA-Directed RNA Polymerases/metabolism , Promoter Regions, Genetic , Protein Conformation , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , RNA , RNA-Binding Proteins/metabolism
20.
Front Immunol ; 13: 873054, 2022.
Article in English | MEDLINE | ID: mdl-35757727

ABSTRACT

Neuropathic pain is a common and challenging neurological disease, which renders an unmet need for safe and effective new therapies. Toll-like receptor 4 (TLR4) expressed on immune cells in the central nervous system arises as a novel target for treating neuropathic pain. In this study, ACT001, an orphan drug currently in clinical trials for the treatment of glioblastoma, was identified as a TLR4 antagonist. In vitro quenching titrations of intrinsic protein fluorescence and saturation transfer difference (STD)-NMR showed the direct binding of ACT001 to TLR4 co-receptor MD2. Cellular thermal shift assay (CETSA) showed that ACT001 binding affected the MD2 stability, which implies that MD2 is the endogenous target of ACT001. In silico simulations showed that ACT001 binding decreased the percentage of hydrophobic area in the buried solvent-accessible surface areas (SASA) of MD2 and rendered most regions of MD2 to be more flexible, which is consistent with experimental data that ACT001 binding decreased MD2 stability. In keeping with targeting MD2, ACT001 was found to restrain the formation of TLR4/MD2/MyD88 complex and the activation of TLR4 signaling axes of NF-κB and MAPKs, therefore blocking LPS-induced TLR4 signaling downstream pro-inflammatory factors NO, IL-6, TNF-α, and IL-1ß. Furthermore, systemic administration of ACT001 attenuated allodynia induced by peripheral nerve injury and activation of microglia and astrocyte in vivo. Given the well-established role of neuroinflammation in neuropathic pain, these data imply that ACT001 could be a potential drug candidate for the treatment of chronic neuropathic pain.


Subject(s)
Furans , Neuralgia , Toll-Like Receptor 4 , Furans/pharmacology , Humans , Lymphocyte Antigen 96/metabolism , Neuralgia/drug therapy , Neuralgia/metabolism , Signal Transduction/drug effects , Toll-Like Receptor 4/antagonists & inhibitors , Toll-Like Receptor 4/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...