Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Chem ; 14(10): 1103-1109, 2022 10.
Article in English | MEDLINE | ID: mdl-35710986

ABSTRACT

Aqueous organic redox flow batteries offer a safe and potentially inexpensive solution to the problem of storing massive amounts of electricity produced from intermittent renewables. However, molecular decomposition represents a major barrier to commercialization-and although structural modifications can improve stability, it comes at the expense of synthetic cost and molecular weight. Now, utilizing 2,6-dihydroxy-anthraquinone (DHAQ) without further structural modification, we demonstrate that the regeneration of the original molecule after decomposition represents a viable route to achieve low-cost, long-lifetime aqueous organic redox flow batteries. We used in situ (online) NMR and electron paramagnetic resonance, and complementary electrochemical analyses to show that the decomposition compound 2,6-dihydroxy-anthrone (DHA) and its tautomer, 2,6-dihydroxy-anthranol (DHAL) can be recomposed to DHAQ electrochemically through two steps: oxidation of DHA(L)2- to the dimer (DHA)24- by one-electron transfer followed by oxidation of (DHA)24- to DHAQ2- by three-electron transfer per DHAQ molecule. This electrochemical regeneration process also rejuvenates the positive electrolyte-rebalancing the states of charge of both electrolytes without introducing extra ions.


Subject(s)
Anthralin , Mitoxantrone , Electrolytes/chemistry , Ions , Oxidation-Reduction
2.
Nat Commun ; 13(1): 2140, 2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35440649

ABSTRACT

We demonstrate a carbon capture system based on pH swing cycles driven through proton-coupled electron transfer of sodium (3,3'-(phenazine-2,3-diylbis(oxy))bis(propane-1-sulfonate)) (DSPZ) molecules. Electrochemical reduction of DSPZ causes an increase of hydroxide concentration, which absorbs CO2; subsequent electrochemical oxidation of the reduced DSPZ consumes the hydroxide, causing CO2 outgassing. The measured electrical work of separating CO2 from a binary mixture with N2, at CO2 inlet partial pressures ranging from 0.1 to 0.5 bar, and releasing to a pure CO2 exit stream at 1.0 bar, was measured for electrical current densities of 20-150 mA cm-2. The work for separating CO2 from a 0.1 bar inlet and concentrating into a 1 bar exit is 61.3 kJ molCO2-1 at a current density of 20 mA cm-2. Depending on the initial composition of the electrolyte, the molar cycle work for capture from 0.4 mbar extrapolates to 121-237 kJ molCO2-1 at 20 mA cm-2. We also introduce an electrochemical rebalancing method that extends cell lifetime by recovering the initial electrolyte composition after it is perturbed by side reactions. We discuss the implications of these results for future low-energy electrochemical carbon capture devices.

3.
ChemSusChem ; 14(2): 745-752, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33295127

ABSTRACT

Ferrocene (Fc) is one of the very limited organic catholyte options for aqueous organic flow batteries (AOFBs), a potential electrochemical energy storage solution to the intermittency of renewable electricity. Commercially available Fc derivatives are barely soluble in water, while existing methods for making water-soluble Fc derivatives by appending hydrophilic or charged moieties are tedious and time-consuming, with low yields. Here, a strategy was developed based on host-guest inclusion to acquire water-soluble Fc-based catholytes by simply mixing Fc derivatives with ß-cyclodextrins (ß-CDs) in water. Factors determining the stability and the electrochemical behavior of the inclusion complexes were identified. When adopted in a neutral pH AOFB, the origin of capacity loss was identified to be a chemical degradation caused by the nucleophilic attack on the center FeIII atom of the oxidized Fc derivatives. By limiting the state of charge, a low capacity fade rate of 0.0073 % h-1 (or 0.0020 % per cycle) was achieved. The proposed strategy may be extended to other families of electrochemically active water-insoluble organic compounds, bringing more electrolyte options for practical AOFB applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...