Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 21(2)2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33477610

ABSTRACT

Refractive index resolution is an important indicator for a wavelength interrogation surface plasmon resonance sensor, which can be affected by signal-to-noise ratio. This paper investigates the impact of spectral signal-to-noise ratio on a surface plasmon resonance sensor. The effects of different spectral powers and noises are compared and verified through simulation and experiments. The results indicate that the optimal resonance wavelength is changed and the refractive index resolution can even be nearly twice as good when the spectral signal-to-noise ratio is increased. The optimal resonance wavelength can be found by changing the spectral power distribution or noise.

2.
Sensors (Basel) ; 19(5)2019 Mar 08.
Article in English | MEDLINE | ID: mdl-30857251

ABSTRACT

Sensitivity is an important performance index for evaluating surface plasmon resonance (SPR) biosensors. Sensitivity enhancement has always been a hot topic. It is found that the different refractive indices of samples require different combinations of prism and metal film for better sensitivity. Furthermore, the sensitivity can be enhanced by coating two-dimensional (2D) materials with appropriate layers on the metal film. At this time, it is necessary to choose the best film configuration to enhance sensitivity. With the emergence of more and more 2D materials, selecting the best configuration manually is becoming more complicated. Compared with the traditional manual method of selecting materials and layers, this paper proposes an optimization method based on a genetic algorithm to quickly and effectively find the optimal film configuration that enhances sensitivity. By using this method, not only can the optimal number of layers of 2D materials be determined quickly, but also the optimal configuration can be conveniently found when many materials are available. The maximum sensitivity can reach 400°/RIU after optimization. The method provided application value for the relevant researchers seeking to enhance sensitivity.

3.
J Opt Soc Am A Opt Image Sci Vis ; 34(3): 344-348, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28248360

ABSTRACT

A wire grating beam splitter (WGBS) substrate in a dispersion-compensated polarization Sagnac interferometer (DCPSI) may introduce an additional shear distance in the shear distance generated by the DCPSI, thereby causing poor adaptability of the DCPSI to white light. This work applies a compensation scheme of an optical flat with the same material and thickness as the WGBS and parallel to the WGBS introduced in the other arm of the DCPSI. Theoretically, this method can decrease the additional shear distance approaching 0. The ideal shear distance in the simulation experiment is 5.86 mm, and the shear distance before and after compensation is 5.40 and 5.86 mm, respectively. The theoretical value of the additional shear distance in this experiment is -0.6625 mm, and the average compensation value is 0.66 mm. Overall, experiment and simulation results indicate that the above method can effectively eliminate the additional shear distance.

SELECTION OF CITATIONS
SEARCH DETAIL
...