Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Huan Jing Ke Xue ; 38(1): 156-161, 2017 Jan 08.
Article in Chinese | MEDLINE | ID: mdl-29965042

ABSTRACT

Uptake of nitrogen (N) and phosphorus (P) and their purification capacity for five native submerged macrophytes were investigated in laboratory simulated hydrostatic conditions,including Hydrilla verticillata,Vallisneria natans,Ceratophyllum demersum,Myriophyllum spicatum,Potamogeton maackianus.The results indicated that the moisture contents of different submerged macrophytes were almost the same before and after the test,with the range of 89.8%-92.0%.The net accumulated biomass changed from 1.52 g·m-2 to 12.92 g·m-2 among different submerged macrophytes,and the highest net accumulated biomass of Hydrilla verticillata was 8.5 times higher than the lowest plant of Potamogeton maackianus.The N and P contents of five submerged macrophytes ranged from 26.54 to 34.44g·kg-1 and from 2.54 to 4.01g·kg-1,respectively,and the N and P contents of Ceratophyllum demersum were relatively high.Total N and P removal efficiency of different submerged macrophyte treatments had ranges of 63.8%-83.1% and 49.2%-70.8%,significantly higher than those of the CK treatment (39.9% and 36.9%),respectively,and the removal efficiency decreased in the order of Hydrilla verticillata >Ceratophyllum demersum >Vallisneria natans >Myriophyllum spicatum >Potamogeton maackianus.Total N and P removal efficiencies of different submerged macrophyte treatments were significantly correlated with net accumulated biomass,with correlation coefficients of 0.994(P<0.01) and 0.996(P<0.01).The contribution of direct N and P uptake to different submerged macrophytes had the ranges of 1.5%-13.3% and 2.2%-13.2%,and the synergism contribution (deducting self-purification capacity of water) of different submerged macrophytes ranged 22.5%-29.9% and 10.1%-20.6%,indicating that the synergistic effect of submerged macrophytes purification was much more significant than the direct uptake effect in the process of water purification.


Subject(s)
Hydrocharitaceae/metabolism , Nitrogen/metabolism , Phosphorus/metabolism , Potamogetonaceae/metabolism , Water Purification , Biodegradation, Environmental
2.
Huan Jing Ke Xue ; 34(10): 3969-74, 2013 Oct.
Article in Chinese | MEDLINE | ID: mdl-24364318

ABSTRACT

To address effect of the sludge compost-containing medium on the growth of Manila lawn and environment quality, a pot experiment was conducted using six treatments based on contrasting sludge compost addition volume ratios in the soil system (i. e., 0% , 10% , 25% , 50% , 75% and 100%). The results indicated that the growth potential of Manila lawn was increased with increasing sludge compost addition volume ratio. The content of Hg in Manila plant was significantly positively correlated with that in the lawn medium. Although the contents of Cr, Cd and Hg in the lawn medium were synchronously increased with increasing sludge compost addition volume ratio in the soil system, their contents were all lower than the critical levels of third-class standard in the National Soil Environmental Quality Standard. The heavy metal and nitrate concentrations detected in percolating water were significantly positively correlated with those in the lawn medium, respectively. When the sludge compost addition volume ratio was more than 50% in this study, both heavy metal and nitrate concentrations in percolating water would exceed the maximum allowable levels of the National Groundwater Environment Quality Standard.


Subject(s)
Poaceae/growth & development , Sewage/analysis , Soil/chemistry , Water/chemistry , Metals, Heavy/analysis , Nitrates/analysis , Soil Pollutants/analysis
3.
Huan Jing Ke Xue ; 29(9): 2437-40, 2008 Sep.
Article in Chinese | MEDLINE | ID: mdl-19068623

ABSTRACT

Based on the one-dimension model for water environmental capacity (WEC) in river, a new model for the WEC estimation in river-reservoir system was developed in drinking water source conservation area (DWSCA). In the new model, the concept was introduced that the water quality target of the rivers in DWSCA was determined by the water quality demand of reservoir for drinking water source. It implied that the WEC of the reservoir could be used as the water quality control target at the reach-end of the upstream rivers in DWSCA so that the problems for WEC estimation might be avoided that the differences of the standards for a water quality control target between in river and in reservoir, such as the criterions differences for total phosphorus (TP)/total nitrogen (TN) between in reservoir and in river according to the National Surface Water Quality Standard of China (GB 3838-2002), and the difference of designed hydrology conditions for WEC estimation between in reservoir and in river. The new model described the quantitative relationship between the WEC of drinking water source and of the river, and it factually expressed the continuity and interplay of these low water areas. As a case study, WEC for the rivers in DWSCA of Laohutan reservoir located in southeast China was estimated using the new model. Results indicated that the WEC for TN and TP was 65.05 t x a(-1) and 5.05 t x a(-1) in the rivers of the DWSCA, respectively. According to the WEC of Laohutan reservoir and current TN and TP quantity that entered into the rivers, about 33.86 t x a(-1) of current TN quantity should be reduced in the DWSCA, while there was 2.23 t x a(-1) of residual WEC of TP in the rivers. The modeling method was also widely applicable for the continuous water bodies with different water quality targets, especially for the situation of higher water quality control target in downstream water body than that in upstream.


Subject(s)
Models, Theoretical , Rivers , Water Pollutants, Chemical/analysis , Water Supply/analysis , China , Nitrogen/analysis , Phosphorus/analysis
4.
Huan Jing Ke Xue ; 28(7): 1416-24, 2007 Jul.
Article in Chinese | MEDLINE | ID: mdl-17891945

ABSTRACT

Based on the investigation of the application and emission quantities (QAE) of total nitrogen (TN) and total phosphorus (TP) for nonpoint sources in river catchment' s area, included fertilizer applications, livestock and living pollutants emissions, the quantities of TN and TP entered the river were computed by means of export coefficient model in Changle River, southeast China. Self-purification capacities of TN and TP in the reach were also estimated in terms of input-output balance analysis method. According to the provisions of water function planning in the river, the water environment residual capacity (WERC) or the demand for reducing the application and emission (DRAE) of nitrogen and phosphorus in the corresponding catchment were monthly estimated, and WERC and DRAE were respectively allocated among the pollution sources. Results indicated that about 28.8% of TN loads and 51.2% of TP loads could be self-purified respectively in the reach, i. e., purification of 775.9 t a(-1) for TN and 30.9 t a(-1) for TP. Seasonal variations of the self-purification for the pollutants not only resulted from riverine hydrological and ecological conditions, but also affected by the pollution loading. According to the demand of the water quality protection in the reach, about 1581.0 t a(-1) QAE of TN had to reduce in Changle catchment. The maximum demand for the reducing QAE of TN was the fertilizer application (1047.4 t a(-1)), and the highest ratio for the reducing QAE of TN was livestock-poultry breeding (32.4%). There was about 2335.7 t a(-1) WERC for TP in the reach. The largest DRAE of nitrogen was during mid-water season and the least WERC of TP was during higher-water season.


Subject(s)
Environmental Monitoring , Fresh Water/analysis , Nitrogen/analysis , Phosphorus/analysis , Water Pollutants, Chemical/analysis , China , Rivers , Water Supply
5.
J Environ Sci (China) ; 18(4): 680-8, 2006.
Article in English | MEDLINE | ID: mdl-17078546

ABSTRACT

Evaluation and analysis of water quality variations were performed with integrated consideration of water quality parameters, hydrological-meteorologic and anthropogenic factors in Cao-E River, Zhejiang Province of China. Cao-E River system has been polluted and the water quality of some reaches are inferior to Grade V according to National Surface Water Quality Standard of China (GB2002). However, mainly polluted indices of each tributary and mainstream are different. Total nitrogen (TN) and total phosphorus (TP) in the water are the main polluted indices for mainstream that varies from 1.52 to 45.85 mg/L and 0.02 to 4.02 mg/L, respectively. TN is the main polluted indices for Sub-watershed I, II, IV and V (0.76 to 18.27 mg/L). BOD5 (0.36 to 289.5 mg/L), CODMn (0.47 to 78.86 mg/L), TN (0.74 to 31.09 mg/L) and TP (0 to 3.75 mg/L) are the main polluted indices for Sub-watershed III. There are tow pollution types along the river including nonpoint source pollution and point source pollution types. Remarkably temporal variations with a few spatial variations occur in nonpoint pollution type reaches (including mainstream, Sub-watershed I and II) that mainly drained by arable field and/or dispersive rural dwelling district, and the maximum pollutant concentration appears in flooding seasons. It implied that the runoff increases the pollutant concentration of the water in the nonpoint pollution type reaches. On the other hand, remarkably spatial variations occur in the point pollution type reaches (include Sub-watershed III, IV and V) and the maximum pollutant concentration appears in urban reaches. The runoff always decreases the pollutant concentration of the river water in the seriously polluted reaches that drained by industrial point sewage. But for the point pollution reaches resulted from centralized town domestic sewage pipeline and from frequent shipping and digging sands, rainfall always increased the concentration of pollutant (TN) in the river water too. Pollution controls were respectively suggested for these tow types according to different pollution causes.


Subject(s)
Environmental Monitoring , Fresh Water/analysis , Water Pollutants/analysis , Water Supply/standards , China , Nitrogen/analysis , Phosphorus/analysis , Rain , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...