Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 24(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38931653

ABSTRACT

To fully comprehend the patterns of land and ecological damage caused by coal mining subsidence, and to scientifically carry out ecological mine restoration and management, it is urgent to accurately grasp the information of coal mining, particularly in complex coaling areas, such as North Anhui, China. In this paper, a space-air-ground collaborative monitoring system was constructed for coal mining areas based on multi-source remote sensing data and subsidence characteristics of coaling areas were investigated in North Anhui. It was found that from 2019 to 2022, 16 new coal mining subsidence areas were found in northern Anhui, with the total area increasing by 8.1%. In terms of land use, water areas were increased by 101.9 km2 from 2012 to 2022, cultivated land was decreased by 99.3 km2, and residence land was decreased by 11.8 km2. The depth of land subsidence in the subsidence areas is divided into 307.9 km2 of light subsidence areas with a subsidence depth of less than 500 mm; 161.8 km2 of medium subsidence areas with a subsidence depth between 500 mm and 1500 mm; and 281.2 km2 of heavy subsidence areas with a subsidence depth greater than 1500 mm. The total subsidence governance area is 191.2 km2, accounting for 26.5% of the total subsidence area. From the perspective of prefecture-level cities, the governance rate reaches 51.3% in Huaibei, 10.1% in Huainan, and 13.6% in Fuyang. The total reclamation area is 68.8 km2, accounting for 34.5% of the subsidence governance area. At present, 276.1 km2 within the subsidence area has reached stable subsidence conditions, mainly distributed in the Huaibei mining area, which accounts for about 60% of the total stable subsidence area.

2.
Sci Rep ; 14(1): 2311, 2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38280931

ABSTRACT

Ground-based monitoring of seismicity and modulation by external forces in the field of planetary seismology remains equivocal due to the lack of natural observations. Constrained by the natural observations (including Earthquakes, Moonquakes, and Marsquakes) and theoretical models, we present the variation in gravitational acceleration "g" of different solar system objects, combined with external harmonic forcings that are responsible for seismicity modulation on the planetary bodies and their natural satellites. From the global diversity in seismicity modulation, it has been observed that the plate-boundary regions on the Earth exhibit both short and long-period seismicity modulation. In contrast, the stable plate interior regions appear to be more sensitive to long-period seismicity modulation, however, lacking in short-period modulation. The deep Moonquakes are susceptible for both the lunar tidal period (13.6 days and 27 days) and long-period pole wobble modulation (206 days), whereas shallow emergent type moonquakes show a seismic periodicity at the lunation period (29.5 days). Further, the seasonal variation with an annual seismicity burst and seismic periodicity at polar wobble periods for high-frequency Marsquakes captured by InSight lander indicate a natural origin. Whereas diurnal and semi-diurnal periodicity along with Phobos' tidal period, indicate possible artifacts due to different detection probabilities and non-seismic noise in the Martian environment. We argue that, in the context of rate-state-dependent fault friction, the gravity-induced resonance destabilization model appears to be better agreement with the contrast and relative diversity in seismicity modulation linked to the Earth, Moon, and Mars.

3.
Sensors (Basel) ; 22(9)2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35590884

ABSTRACT

The seafloor topography estimation is very important, while the bathymetry data and gravity data are scarce and uneven, which results in large errors in the inversion of the seafloor topography. In this paper, in order to reduce the influence of errors and improve the accuracy of seafloor inversion, the influence of different resolution data on the inversion topography in the Emperor Seamount Chain are investigated by combining ship water depth data and satellite gravity anomaly data released by SIO V29.1. Through the comparison of different resolution models, it is found that the choice of resolution affects the accuracy of the inversion terrain model. An external comparison is presented by using the international high-precision topography data and check points observations. The results show that with the increase in resolution, the fitting residuals obtained by the scale factor are optimized, and the precision of the terrain model is gradually approaching the S&S V19.1 and GEBCO-2020 models, but is better than the ETOPO1 and SRTM 30 models. By external validation using the check points, the standard deviation of the difference was reduced from 58.92 m to 47.01 m, and the correlation between the inverted terrain and the NGDC grid model was increased from 0.9545 to 0.9953. For recovering the Emperor Seamount Chain terrain, the relative error was gradually decreased with the improvement of resolution. The maximum relative error is reduced from 1.09 of 2' topography to 0.74 of 10″ topography, and the average error is reduced from 0.04 to 0.01 with an improvement by 32.11%. The terrain error between the inverted terrain model and the NGDC grid model is gradually reduced, while the error percentage is increasing by 25.51% and 21.49% in the range of -50 to 50 m and -100 to 100 m, respectively. Furthermore, the sparse area can effectively reduce the terrain standard deviation and improve the terrain correlation by increasing the resolution through the analysis of different density subsets. The error was decreased most significantly in sparse and dense homogeneous regions with increasing resolution.

4.
Sensors (Basel) ; 22(6)2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35336403

ABSTRACT

Global Navigation Satellite Systems (GNSSs) can provide high-precision positioning services, which can be applied to fields including navigation and positioning, autonomous driving, unmanned aerial vehicles and so on. However, GNSS signals are easily disrupted in complex environments, which results in a positioning performance with a significantly inferior accuracy and lengthier convergence time, particularly for the single GNSS system. In this paper, multi-GNSS precise point positioning (PPP) with tightly integrating ultra-wide band (UWB) technology is presented to implement fast and precise navigation and positioning. The validity of the algorithm is evaluated by a set of GNSS and UWB data. The statistics indicate that multi-GNSS/UWB integration can significantly improve positioning performance in terms of the positioning accuracy and convergence time. The improvement of the positioning performance for the GNSS/UWB tightly coupled integration mainly concerns the north and east directions, and to a lesser extent, the vertical direction. Furthermore, the convergence performance of GNSS/UWB solution is analyzed by simulating GNSS signal interruption. The reliability and robustness of GNSS/UWB solution during GNSS signal interruption is verified. The results show that multi-GNSS/UWB solution can significantly improve the accuracy and convergence speed of PPP.

5.
Article in English | MEDLINE | ID: mdl-35162634

ABSTRACT

The coronavirus disease of 2019 (COVID-19) pandemic is currently a global challenge, with 210 countries, including Indonesia, seeking to minimize its spread. Therefore, this study aims to determine the spatiotemporal spread pattern of this virus in Surabaya using various data on confirmed cases from 28 April to 26 October 2021. It also aims to determine the relationship between pollutant parameters, such as carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3), as well as the government's high social restrictions policy in Java-Bali. Several methods, such as the weighted mean center, directional distribution, Getis-Ord Gi*, Moran's I, and geographically weighted regression, were used to identify the spatial spread pattern of the virus. The weighted mean center indicated that the epicenter location of the outbreak moved randomly. The directional distribution demonstrated a decrease of 21 km2 at the end of the study phase, which proved that its spread has significantly reduced in Surabaya. Meanwhile, the Getis-Ord Gi* results demonstrated that the eastern and southern parts of the study region were highly infected. Moran's I demonstrate that COVID-19 cases clustered during the spike. The geographically weighted regression model indicated a number of influence zones in the northeast, northwest, and a few in the southwest parts at the peak of R2 0.55. The relationship between COVID-19 cases and air pollution parameters proved that people living at the outbreak's center have low pollution levels due to lockdown. Furthermore, the lockdown policy reduced CO, NO2, SO2, and O3. In addition, increase in air pollutants; namely, NO2, CO, SO2 and O3, was recorded after 7 weeks of lockdown implementation (started from 18 August).


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , Communicable Disease Control , Environmental Monitoring , Geographic Information Systems , Humans , Particulate Matter/analysis , SARS-CoV-2 , Spatio-Temporal Analysis
6.
Sensors (Basel) ; 22(3)2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35161810

ABSTRACT

Low Earth Orbit (LEO) satellites can be used for remote sensing and gravity field recovery, while precise orbit determination (POD) is vital for LEO satellite applications. However, there are some systematic errors when using the LEO satellite orbits released by different agencies in multi-satellite-based applications, e.g., Swarm and Gravity Recovery and Climate Experiment-Follow-On (GRACE-FO), as different GNSS precise orbit and clock products are used as well as processing strategies and software. In this paper, we performed undifferenced kinematic PODs for Swarm and GRACE-FO satellites simultaneously over a total of 14 days by using consistent International Global Navigation Satellite System (GNSS) Service (IGS) precise orbit and clock products. The processing strategy based on an undifferenced ionosphere-free combination and a least squares method was applied for Swarm and GRACE-FO satellites. Furthermore, the quality control for the kinematic orbits was adopted to mitigate abrupt position offsets. Moreover, the accuracy of the kinematic orbits solution was evaluated by carrier phase residual analysis and Satellite Laser Ranging (SLR) observations, as well as comparison with official orbits. The results show that the kinematic orbits solution is better than 4 cm, according to the SLR validation. With quality control, the accuracy of the kinematic orbit solution is improved by 2.49 % for the Swarm-C satellite and 6.98 % for the GRACE-D satellite when compared with their precise orbits. By analyzing the accuracy of the undifferenced kinematic orbit solution, the reliability of the LEO orbit determination is presented in terms of processing strategies and quality control procedures.

7.
Appl Opt ; 61(34): 10159-10170, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36606789

ABSTRACT

The correlated k-distribution (CKD) is a fast radiative transfer model and is often used in atmospheric absorption simulation. In the paper, we apply two automatic CKD methods to satellite brightness temperature simulations from the Fengyun 4A Advanced Geostationary Radiation Imager (AGRI) in infrared channels, namely, the finding point method (FPM) and the re-optimized method (ROM). In the calculation, we used Radiative Transfer for the Television Observation Satellite Operational Vertical Sounder (RTTOV) as the comparison, and we use line-by-line (LBL) integration as the reference. Compared with LBL in the brightness temperature simulation of real profiles, the errors of FPM in 7.1 µm and 13.5 µm channels are 0.22 K, -0.13K for mean error and 0.3128 K, 0.2184 K for root mean square error (RMSE), respectively, which are larger than that of RTTOV, with 0.16 K, 0.02 K, 0.2144 K, and 0.1226 K, respectively. In the other channels, the results show that of ROM has the highest accuracy and RTTOV has the lowest accuracy. In general, FPM and ROM can achieve very good accuracy in satellite infrared remote sensing.

8.
Sensors (Basel) ; 21(18)2021 Sep 12.
Article in English | MEDLINE | ID: mdl-34577330

ABSTRACT

The significant wave height (SWH) of oceans is the main parameter in describing the sea state, which has been widely used in the establishment of ocean process models and the field of navigation and transportation. However, traditional methods such as satellite radar altimeters and buoys cannot achieve SWH estimations with high spatial and temporal resolution. Recently, the spaceborne Global Navigation Satellite System reflectometry (GNSS-R) has provided an opportunity to estimate SWH with a rapid global coverage and high temporal resolution observations, particularly with the Cyclone Global Navigation Satellite System (CYGNSS) mission. In this paper, SWH was estimated using the polynomial function relationship between SWH from ERA5 and Delay-Doppler Map Average (DDMA) as well as Leading Edge Slope (LES) from CYGNSS data. Then, the SWH estimated from CYGNSS data was validated by ERA-Interim data, AVISO data, and buoy data. The results showed that the average correlation coefficient of CYGNSS SWH was 0.945, and the average RMSE was 0.257 m when compared to the ERA-Interim SWH data. The RMSE was 0.423 m and the correlation coefficient was 0.849 when compared with the AVISO SWH. The correlation coefficient with the buoy data was 0.907, and the RMSE was 0.247 m. This method can provide suitable SWH estimation data for ocean dynamics research and ocean environment prediction.


Subject(s)
Cyclonic Storms , Oceans and Seas , Radar
9.
Atmos Res ; 261: 105729, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34135540

ABSTRACT

The calamity of the COVID-19 pandemic during the early half of 2020 not only caused a huge physical and economic loss but altered the social behavior of the whole world. The social and economic stagnation imposed in many countries and served as a major cause of perturbation in atmospheric composition. This paper utilized the relation between atmospheric composition and surface radiation and analyzed the impact of global COVID-19 lockdown on land surface solar and thermal radiation. Top of atmosphere (TOA) and surface radiation are obtained from the Clouds and Earth's Radiant Energy System (CERES) and European Reanalysis product (ERA5) reanalysis product. Aerosol Optical Depth (AOD) is obtained from Moderate Resolution Imaging Spectroradiometer (MODIS) while Nitrogen dioxide (NO2), and sulfur dioxide (SO2) are obtained from Ozone Monitoring Instrument (OMI). Observations of all mentioned parameters are studied for the global lockdown period of 2020 (from January to July) and compared with the corresponding months of the previous four years (2016-19) observations. Regarding surface radiation, April 2020 is the most affected month during the pandemic in which 0.2% increased net solar radiation (NSR), while 3.45% and 4.8% decreased net thermal radiation (NTR) and net radiation (NR) respectively was observed. Average radiative forcing during March-May 2020 was observed as 1.09 Wm-2, -2.19 Wm-2 and -1.09 Wm-2 for NSR, NTR and NR, respectively. AOD was reduced by 0.2% in May 2020 while NO2 and SO2 were reduced by 5.4% and 8.8%, respectively, in April 2020. It was observed that NO2 kept on reducing since January 2020 while SO2 kept on reducing since February 2020 which were the pre-lockdown months. These results suggest that a more sophisticated analysis is needed to explain the atmosphere-radiation relation.

10.
Sensors (Basel) ; 20(22)2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33233653

ABSTRACT

Laser time transfer is of great significance in timing and global time synchronization. However, temperature drift may occur and affect the delay of the electronics system, optic generation and detection system. This paper proposes a post-processing method for the compensation of temperature-induced system delay, which does not require any changes to the hardware setup. The temperature drift and time stability of the whole system are compared with and without compensation. The results show that propagation delay drift as high as 240 ps caused by temperature changes is compensated. The temperature drift coefficient was diminished down to ~0.05 ps/°C from ~20.0 ps/°C. The system precision was promoted to ~2 ps from ~11 ps over a time period of 80,000 s. This method performs significant compensation of single-photon laser time transfer system propagation drift and will to help establish an ultra-stable laser time transfer link in a space application.

11.
Sensors (Basel) ; 20(9)2020 Apr 27.
Article in English | MEDLINE | ID: mdl-32349209

ABSTRACT

The traditional altimetry satellite, which is based on pulse-limited radar altimeter, only measures ocean surface heights along tracks; hence, leads to poorer accuracy in the east component of the vertical deflections compared to the north component, which in turn limits the final accuracy of the marine gravity field inversion. Wide-swath altimetry using radar interferometry can measure ocean surface heights in two dimensions and, thus, can be used to compute vertical deflections in an arbitrary direction with the same accuracy. This paper aims to investigate the impact of Interferometric Radar Altimeter (InRA) errors on gravity field inversion. The error propagation between gravity anomalies and InRA measurements is analyzed, and formulas of their relationship are given. By giving a group of possible InRA parameters, numerical simulations are conducted to analyze the accuracy of gravity anomaly inversion. The results show that the accuracy of the gravity anomalies is mainly influenced by the phase errors of InRA; and the errors of gravity anomalies have a linear approximation relationship with the phase errors. The results also show that the east component of the vertical deflections has almost the same accuracy as the north component.

12.
Sci Rep ; 9(1): 18227, 2019 Dec 03.
Article in English | MEDLINE | ID: mdl-31796793

ABSTRACT

Geophysical processes of the pre-earthquake activities are difficult to be determined since less pre-seismic signal is observed directly. Crustal density changes derived from the periodical terrestrial gravimetry may provide meaningful deep information for the pre-earthquake cue. In this study, the crustal density changes following the 2016 MS6.4 Menyuan earthquake are estimated using ground-based gravity-change data from 2011 to 2015 in the northeastern Tibetan Plateau. The results show that negative density changes dominate the region between the South Longshou Mountain fault and the Daban Mountain fault except the southeast of this region (the seismic region) during 2011-2012. Positive density changes appeared in the middle crust near the epicenter during 2012-2013 and in the upper and middle crust east of the epicenter approximately 1.5 years before the earthquake (2013-2014), and then negative density changes appeared under and northeast of the epicenter approximately four months before the earthquake (2014-2015). The state of the crustal materials near the seismic region changed from convergence to expansion, in turn, indicating that the characteristics of the deep seismogenic process was corresponding to Amos Nur's 1974 dilatancy-fluid diffusion model.

13.
Sensors (Basel) ; 19(22)2019 Nov 16.
Article in English | MEDLINE | ID: mdl-31744110

ABSTRACT

Snow is one of the most critical sources of freshwater, which influences the global water cycle and climate change. However, it is difficult to monitor global snow variations with high spatial-temporal resolution using traditional techniques due to their costly and labor-intensive nature. Nowadays, the Global Positioning System Interferometric Reflectometry (GPS-IR) technique can measure the average snow depth around a GPS antenna using its signal-to-noise ratio (SNR) data. Previous studies focused on the use of GPS data at sites located in flat areas or on very gentle slopes. In this contribution, we propose a strategy called the Tilted Surface Strategy (TSS), which uses the SNR data reflected only from the flat quadrants to estimate the snow depth instead of the conventional strategy, which employs all the SNR data reflected from the whole area around a GPS antenna. Three geodetic GPS sites from the Plate Boundary Observatory (PBO) project were chosen in this experimental study, of which GPS sites p683 and p101 were located on slopes with their gradients up to 18% and the site p025 was located on a flat area. Comparing the snow depths derived with the GPS-IR TSS method with the snow depth results provided with the GPS-PBO, i.e., GPS-IR with the conventional strategy, the Snowpack Telemetry (SNOTEL) network measurements and gridded Snow Data Assimilation System (SNODAS) estimates, it was found that the snow depths derived with the four methods had a good agreement, but the snow depth time series with the GPS-IR TSS method were closer to the SNOTEL measurements and the SNODAS estimates than those with GPS-PBO method. Similar observations were also obtained from the cumulative snowfall time series. Results generally indicated that for those GPS sites located on slopes, the TSS strategy works better.

14.
Sensors (Basel) ; 17(6)2017 Jun 05.
Article in English | MEDLINE | ID: mdl-28587255

ABSTRACT

Global Navigation Satellite Systems (GNSS) have been widely used in navigation, positioning and timing. Nowadays, the multipath errors may be re-utilized for the remote sensing of geophysical parameters (soil moisture, vegetation and snow depth), i.e., GPS-Multipath Reflectometry (GPS-MR). However, bistatic scattering properties and the relation between GPS observables and geophysical parameters are not clear, e.g., vegetation. In this paper, a new element on bistatic scattering properties of vegetation is incorporated into the traditional GPS-MR model. This new element is the first-order radiative transfer equation model. The new forward GPS multipath simulator is able to explicitly link the vegetation parameters with GPS multipath observables (signal-to-noise-ratio (SNR), code pseudorange and carrier phase observables). The trunk layer and its corresponding scattering mechanisms are ignored since GPS-MR is not suitable for high forest monitoring due to the coherence of direct and reflected signals. Based on this new model, the developed simulator can present how the GPS signals (L1 and L2 carrier frequencies, C/A, P(Y) and L2C modulations) are transmitted (scattered and absorbed) through vegetation medium and received by GPS receivers. Simulation results show that the wheat will decrease the amplitudes of GPS multipath observables (SNR, phase and code), if we increase the vegetation moisture contents or the scatters sizes (stem or leaf). Although the Specular-Ground component dominates the total specular scattering, vegetation covered ground soil moisture has almost no effects on the final multipath signatures. Our simulated results are consistent with previous results for environmental parameter detections by GPS-MR.

15.
Sensors (Basel) ; 15(2): 2944-63, 2015 Jan 28.
Article in English | MEDLINE | ID: mdl-25635416

ABSTRACT

The Earth's rotation undergoes changes with the influence of geophysical factors, such as Earth's surface fluid mass redistribution of the atmosphere, ocean and hydrology. However, variations of Earth Rotation Parameters (ERP) are still not well understood, particularly the short-period variations (e.g., diurnal and semi-diurnal variations) and their causes. In this paper, the hourly time series of Earth Rotation Parameters are estimated using Global Positioning System (GPS), Global Navigation Satellite System (GLONASS), and combining GPS and GLONASS data collected from nearly 80 sites from 1 November 2012 to 10 April 2014. These new observations with combining different satellite systems can help to decorrelate orbit biases and ERP, which improve estimation of ERP. The high frequency variations of ERP are analyzed using a de-trending method. The maximum of total diurnal and semidiurnal variations are within one milli-arcseconds (mas) in Polar Motion (PM) and 0.5 milli-seconds (ms) in UT1-UTC. The semidiurnal and diurnal variations are mainly related to the ocean tides. Furthermore, the impacts of satellite orbit and time interval used to determinate ERP on the amplitudes of tidal terms are analyzed. We obtain some small terms that are not described in the ocean tide model of the IERS Conventions 2010, which may be caused by the strategies and models we used or the signal noises as well as artifacts. In addition, there are also small differences on the amplitudes between our results and IERS convention. This might be a result of other geophysical excitations, such as the high-frequency variations in atmospheric angular momentum (AAM) and hydrological angular momentum (HAM), which needs more detailed analysis with more geophysical data in the future.

SELECTION OF CITATIONS
SEARCH DETAIL
...