Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 412, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36624178

ABSTRACT

Pot experiments were conducted to explore the effects of different rice straw returning soil on the community structure and function of bacteria in rice root, rhizosphere, leaf and phyllosphere under 7 conditions of rice straw combined with different fertilizers respectively. The results showed that: rice straw returning in different ways increased the content of soil pH and K, and reduced the accumulation of N, P and organic matter in soil, and different rice straw returning ways had different effects; rice straw returning reduced dry weight of rice grain, 2% of rice straw returning reduced rice grain greater than that of 1% rice straw returning; The reduction of NP combined fertilization is greater than that of NK combined fertilization and NPK combined fertilization. Except for the decrease of chao_1 index in rice root at maturity, rice straw returning significantly improved the abundance, diversity and evenness of bacteria in rice root, rhizosphere, leaf and phyllosphere. Rice straw returning increased the content of REEs in rice, and 2% of rice straw returning soil increased rare earth element (REE) content in rice grain greater than that of 1% rice straw returning soil. Different ways of rice straw returning soil reduced the abundance of Bacillus, while the abundance of Exiguobacterium in rice leaves was hundreds of times higher than that of the control group, and the genus in leaves was dozens of times higher than that of the control group, 2% of rice straw returning soil increased the abundance of harmful bacteria and pathogens of Acidovorax, Clostridium sensu stricto, Citrobacter, Curtobacterium, and 1% of rice straw returning soil promoted the abundance of nitrogen fixing bacteria, plant growth-promoting bacteria, stress resistant bacteria such as Lactobacillus, Azospira, Acinetobacter, Bradyrhizobium and Acidocella; Environmental factors such as available P, organic matter, total nitrogen, nitrate nitrogen, rare earth element content in rice roots, available K and soil moisture are important factors affecting the community structure of bacteria in rice roots, rhizosphere, leaf and phyllosphere at tillering stage of the rice. pH, REE content in rice roots, shoots, organic matter, total nitrogen, nitrate nitrogen and soil moisture content are the main environmental factors affecting the community structure of bacteria in rice roots, rhizosphere, leaf and phyllosphere at maturity stage of rice. 2% rice straw returning soil promoted the formation of harmful bacteria, which may be an important reason for its significant reduction in the dry weight of rice grains.


Subject(s)
Metals, Rare Earth , Oryza , Fertilizers/analysis , Oryza/microbiology , Nitrates/pharmacology , Soil/chemistry , Bacteria , Mining , Nitrogen/pharmacology , Soil Microbiology , Agriculture/methods
2.
Sci Rep ; 12(1): 2089, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35136105

ABSTRACT

The effects of rare earth mining on rice biomass, rare earth element (REE) content and bacterial community structure was studied through pot experiment. The research shows that the REE content in rice roots, shoots and grains was significantly positive correlated with that in soil, and the dry weight of rice roots, shoots and grains was highly correlated with soil physical and chemical properties, nutrient elements and REE contents; The exploitation of rare earth minerals inhibited a-diversity of endophytic bacteria in rhizosphere, root, phyllosphere and leaf of rice, significantly reduced the abundance index, OTU number, Chao, Ace index and also significantly reduced the diversity index-Shannon index, and also reduced uniformity index: Pielou's evenness index, which caused ß-diversity of bacteria to be quite different. The exploitation of rare earth minerals reduces the diversity of bacteria, but forms dominant bacteria, such as Burkholderia, Bacillus, Buttiauxella, Acinetobacter, Bradyrhizobium, Candida koribacter, which can degrade the pollutants formed by exploitation of rare earth minerals, alleviate the compound pollution of rare earth and ammonia nitrogen, and also has the function of fixing nitrogen and resisting rare earth stress; The content of soil available phosphorus in no-mining area is lower, and the dominant bacteria of Pantoea formed in such soil, which has the function of improving soil phosphorus availability. Rare earth elements and physical and chemical properties of soil affect the community structure of bacteria in rhizosphere and phyllosphere of rice, promote the parallel movement of some bacteria in rhizosphere, root, phyllosphere and leaf of rice, promote the construction of community structure of bacteria in rhizosphere and phyllosphere of rice, give full play to the growth promoting function of Endophytes, and promote the growth of rice. The results showed that the exploitation of rare earth minerals has formed the dominant endophytic bacteria of rice and ensured the yield of rice in the mining area, however, the mining of mineral resources causes the compound pollution of rare earth and ammonia nitrogen, which makes REE content of rice in mining area significantly higher than that in non-mining area, and the excessive rare earth element may enter the human body through the food chain and affect human health, so the food security in the REE mining area deserves more attention.


Subject(s)
Endophytes/drug effects , Metals, Rare Earth/toxicity , Microbiota , Oryza/microbiology , Rhizosphere , Bacteria/drug effects , Metals, Rare Earth/metabolism , Oryza/drug effects , Oryza/metabolism , Soil/chemistry , Soil Microbiology
3.
Sci Rep ; 10(1): 10331, 2020 06 25.
Article in English | MEDLINE | ID: mdl-32587300

ABSTRACT

Pot experiments were carried out to study the effects of rice straw (RS) and rice straw ash (RSA) on the growth of early rice and α-diversity of bacterial community in soils around rare earth mining areas of Xunwu and Xinfeng counties in South Jiangxi of China. The results showed that the exploitation of rare earth resources leads to soil pollution around rare earth mining areas and affects the growth of rice, and the content of rare earth elements (REEs) in rice was positively correlated with that in soils and negative correlated with dry weight of rice; The addition of RS to soils around REE mining area can inhibit growth of early rice, and the dry weight of rice grains, shoots, roots is lower when compared with the controls, while the content of REEs is higher. The α-diversity of soil bacterial decreases, which promotes the growth of Pseudorhodoferax, Phenylobacterium and other bacteria of the same kind, and inhibits the growth of beneficial bacteria. The addition of RSA to soils had no significant effect on α-diversity of soil bacterial but promoted the growth of Azospira and other beneficial bacteria, inhibited the growth of Bryobacter and other bacteria of the same kind, significantly improved the dry weight of grains, shoots and roots of early rice, and reduced the content of REEs in these parts of rice. It can be concluded that RS is unsuitable to be added to the planting soil of early rice in REE mining area, while RSA is suitable.


Subject(s)
Fertilizers , Microbiota/drug effects , Oryza/growth & development , Soil Pollutants/adverse effects , Soil/chemistry , China , Environmental Monitoring , Environmental Pollution/adverse effects , Metals, Rare Earth/analysis , Mining , Oryza/drug effects , Oryza/microbiology , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/microbiology , Plant Shoots/drug effects , Plant Shoots/growth & development , Soil Microbiology , Soil Pollutants/analysis
4.
J Hazard Mater ; 381: 121004, 2020 01 05.
Article in English | MEDLINE | ID: mdl-31476709

ABSTRACT

The effects of phosphate rock (PR), bone charcoal (BC), single superphosphate (SSP) and calcium magnesium phosphate (CMP) on rice growth and bacterial community structure in mining area of heavy and light rare earth elements(REEs) were studied by pot experiment, field experiments were conducted with CMP and BC as restorative materials. The pot experiment showed that BC, SSP and CMP improved dry weight of rice (especially grains) in two places by 84.23%, 116.97%, 81.83%, 1630.77%, 1817.95% and 902.56% respectively; and reduced REE content of rice (especially roots) in two places by 28.19%, 81.67%, 90.58%, 67.87%, 81.72% and 94.81%; PR had little effect on dry weight and REE content of rice in both places, but reduces Bacillusabundance in both places, while BC significantly improved the abundance of Perlucidibaca and Bacillus; CMP had little effect on bacterial community, two-year field experiments showed that dry weight of rice grain treated with BC was 100% and 43.0% higher than that treated with CK and CMP, and the content of REEs was 91.8% and 16.8% lower than that with CK and CMP. The results of pot and field experiments both show BC is the most potential material for restoring soil-plant ecosystem in REE mining area.


Subject(s)
Metals, Rare Earth , Mining , Oryza/growth & development , Phosphates , Soil Microbiology , Bacteria/genetics , Bacteria/growth & development , Bacteria/isolation & purification , Charcoal , Ecosystem
5.
Chemosphere ; 236: 124322, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31330436

ABSTRACT

The exploitation and smelting of rare earth resources lead to serious pollution of rare earth elements (REEs) in farmland around mining area. The influence of four kinds of phosphate amendments-phosphate rock (PR), superphosphate (SSP), bone char (BC), and calcium magnesium phosphate (CMP)-on the bioavailability of REEs and the uptake and accumulation of 15 types of REE in rice were conducted in this study. Soil solutions were collected at tillering stage, heading stage and maturing stage, and rice was harvested at maturing stage. The mechanism of phosphate amendments reducing the bioavailability of REEs was studied by X-Ray diffraction and ICP-MS. PR treatment inhibited rice growth, but SSP, BC and CMP treatments all promoted rice growth, improved biomass of roots, shoots and grains, and promoted the uptake of phosphorous in rice. When compared with the CK, SSP, BC and CMP reduced the total REE concentrations in rice roots by 82.2%, 67.9% and 89.6%, shoots by 75.4%, 40.1% and 65.5%, grains by 23.8%, 29.0% and 29.3%, respectively. PR, SSP, BC and CMP significantly reduced the concentrations of REEs in the soil solution at three stages of rice growth. Analytic results of X-ray diffraction shows that adding PR, SSP, BC and CMP can lead to the formation of rare earth phosphate in the soil, thus reduce the activity of the REEs in the soil. Because SSP releases H+ during its dissolution, which has the risk of activating REEs in soil, CMP and BC are potential materials for remediation of REE-contaminated soil.


Subject(s)
Environmental Pollution/analysis , Metals, Rare Earth/chemistry , Oryza/chemistry , Phosphates/chemistry , Soil Pollutants/chemistry , Soil/chemistry , X-Ray Diffraction/methods
6.
Sci Rep ; 8(1): 13368, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30190569

ABSTRACT

Waterborne pathogens have attracted a great deal of attention in the public health sector over the last several decades. However, little is known about the pathogenic microorganisms in urban water systems. In this study, the bacterial community structure of 16 typical surface waters in the city of Beijing were analyzed using Illumina MiSeq high-throughput sequencing based on 16S rRNA gene. The results showed that Bacteroidetes, Proteobacteria and Actinobacteria were the dominant groups in 16 surface water samples, and Betaproteobacteria, Alphaproteobacteria, Flavobacteriia, Sphingobacteriia and Actinobacteria were the most dominant classes. The dominant genus across all samples was Flavobacterium. In addition, fifteen genus level groups of potentialy pathogenic bacteria were detected within the 16 water samples, with Pseudomonas and Aeromonas the most frequently identified. Spearman correlation analysis demonstrated that richness estimators (OTUs and Chao1) were correlated with water temperature, nitrate and total nitrogen (p < 0.05), while ammonia-nitrogen and total nitrogen were significantly correlated with the percent of total potential pathogens (p ≤ 0.05). These results could provide insight into the ecological function and health risks of surface water bacterial communities during the process of urbanization.


Subject(s)
Bacteria , Microbial Consortia , Water Microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/growth & development , Bacteria/pathogenicity , Humans , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Urban Renewal
7.
J Hazard Mater ; 353: 142-150, 2018 07 05.
Article in English | MEDLINE | ID: mdl-29660700

ABSTRACT

Phthalate esters (PAEs) are a type of plasticizer that has aroused great concern due to their mutagenic, teratogenic, and carcinogenic effects, wherefore dibutyl phthalate (DBP) and other PAEs have been listed as priority pollutants. In this study, the impacts of DBP on a soil-vegetable ecosystem were investigated. The results showed that DBP could accumulate within vegetable tissues, and the accumulative effect was enhanced with higher levels of DBP contamination in soils. DBP accumulation also decreased vegetable quality in various ways, including decreased soluble protein content and increased nitrate content. The diversity of bacteria in soils gradually decreased with increasing DBP concentration, while no clear association with endophytic bacteria was observed. Also, the relative abundance, structure, and composition of soil bacterial communities underwent successional change during the DBP degradation period. The variation of bulk soil bacterial community was significantly associated with DBP concentration, while changes in the rhizosphere soil bacteria community were significantly associated with the properties of both soil and vegetables. The results indicated that DBP pollution could increase the health risk from vegetables and alter the biodiversity of indigenous bacteria in soil-vegetable ecosystems, which might further alter ecosystem functions in agricultural fields.


Subject(s)
Brassica napus/metabolism , Dibutyl Phthalate/metabolism , Plasticizers/metabolism , Soil Microbiology , Soil Pollutants/metabolism , Vegetables/metabolism , Bacteria/genetics , Biodiversity , Brassica napus/growth & development , Brassica napus/microbiology , RNA, Ribosomal, 16S/genetics , Vegetables/growth & development , Vegetables/microbiology
8.
J Environ Sci (China) ; 44: 131-140, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27266309

ABSTRACT

The influence of soil properties on toxicity threshold values for Pb toward soil microbial processes is poorly recognized. The impact of leaching on the Pb threshold has not been assessed systematically. Lead toxicity was screened in 17 Chinese soils using a substrate-induced nitrification (SIN) assay under both leached and unleached conditions. The effective concentration of added Pb causing 50% inhibition (EC50) ranged from 185 to >2515mg/kg soil for leached soil and 130 to >2490mg/kg soil for unleached soil. These results represented >13- and >19-fold variations among leached and unleached soils, respectively. Leaching significantly reduced Pb toxicity for 70% of both alkaline and acidic soils tested, with an average leaching factor of 3.0. Soil pH and CEC were the two most useful predictors of Pb toxicity in soils, explaining over 90% of variance in the unleached EC50 value. The relationships established in the present study predicted Pb toxicity within a factor of two of measured values. These relationships between Pb toxicity and soil properties could be used to establish site-specific guidance on Pb toxicity thresholds.


Subject(s)
Environmental Monitoring/methods , Lead/analysis , Soil Pollutants/analysis , Soil/chemistry , Biological Assay , China , Environmental Monitoring/standards , Lead/standards , Nitrification , Soil Pollutants/standards
9.
Huan Jing Ke Xue ; 36(4): 1474-80, 2015 Apr.
Article in Chinese | MEDLINE | ID: mdl-26164929

ABSTRACT

Effect of interactions between boron (B) and antimony on the uptake and accumulation by rice (Oryza sativa L.) seedling was investigated in solution culture. The results showed that Sb(III) and Sb(V) could inhibit rice growth and Sb(III) was more toxic than Sb(V). Concentrations of B in rice roots and shoots were significantly affected by the addition of Sb(III) and Sb(V). The addition of 30 µmol x L(-1) Sb(III) could significantly decrease B of rice shoots and roots by 57.6% and 75.6%, and 30 µmol x L(-1) Sb(V) could decrease B of rice roots by 16.0%, compared with the control treatment, when the B concentration was 0.5 mg x L(-1). Equally, adding B also significantly affected the concentrations of Sb in rice roots and shoots. The addition of 2.0 mg x L(-1) B could decrease the concentrations of Sb in rice roots and shoots,by 39.1% and 9.2%, respectively, compared with 0.5 mg x L(-1) B, when the Sb(III) concentration was 10 µmol x L(-1). Adding 2.0 mg x L(-1) B could decreasd Sb concentrations in rice roots by 13.9%, compared with 0.5 mg x L(-1) B, when the Sb(V) concentration was 10 µmol x L(-1). Furthermore, adding B had significant effect on bioaccumulation factor and distribution ratio of Sb in rice roots and shoots. The results of the study demonstrated that Sb pollution in farmland could be alleviated by adding B fertilizer, thus protecting human health from Sb pollution.


Subject(s)
Antimony/chemistry , Boron/chemistry , Oryza/metabolism , Plant Roots/metabolism , Plant Shoots/metabolism , Seedlings/metabolism
10.
Huan Jing Ke Xue ; 36(3): 1060-8, 2015 Mar.
Article in Chinese | MEDLINE | ID: mdl-25929077

ABSTRACT

Rare earth elements content in farmland soils and crops of the surrounding copper mining and smelting plant in Jiangxi province was studied. The results showed that copper mining and smelting could increase the content of rare earth elements in soils and crops. Rare earth elements content in farmland soils of the surrounding Yinshan Lead Zinc Copper Mine and Guixi Smelting Plant varied from 112.42 to 397.02 mg x kg(-1) and 48.81 to 250.06 mg x kg(-1), and the average content was 254.84 mg x kg(-1) and 144.21 mg x kg(-1), respectively. The average contents of rare earth elements in soils in these two areas were 1.21 times and 0.68 times of the background value in Jiangxi province, 1.36 times and 0.77 times of the domestic background value, 3.59 times and 2.03 times of the control samples, respectively. Rare earth elements content in 10 crops of the surrounding Guixi Smelting Plant varied from 0.35 to 2.87 mg x kg(-1). The contents of rare earth elements in the leaves of crops were higher than those in stem and root. The contents of rare earth elements in Tomato, lettuce leaves and radish leaves were respectively 2.87 mg x kg(-1), 1.58 mg x kg(-1) and 0.80 mg x kg(-1), which were well above the hygienic standard limit of rare earth elements in vegetables and fruits (0.70 mg x kg(-1)). According to the health risk assessment method recommended by America Environmental Protection Bureau (USEPA), we found that the residents' lifelong average daily intake of rare earth elements was 17.72 mg x (kg x d)(-1), lower than the critical value of rare earth elements damage to human health. The results suggested that people must pay attention to the impact of rare earth elements on the surrounding environment when they mine and smelt copper ore in Jiangxi.


Subject(s)
Crops, Agricultural/chemistry , Metals, Rare Earth/analysis , Mining , Soil Pollutants/analysis , Soil/chemistry , China , Copper , Environmental Monitoring , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...