Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; : e202405334, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720373

ABSTRACT

The single-atom Fe-N-C catalyst has shown great promise for the oxygen reduction reaction (ORR), yet the intrinsic activity is not satisfactory. There is a pressing need to gain a deeper understanding of the charge configuration of the Fe-N-C catalyst and to develop rational modulation strategies. Herein, we have prepared a single-atom Fe catalyst with the co-coordination of N and O (denoted as Fe-N/O-C) and adjacent defect, proposing a strategy to optimize the d-orbital spin-electron filling of Fe sites by fine-tuning the first coordination shell. The Fe-N/O-C exhibits significantly better ORR activity compared to its Fe-N-C counterpart and commercial Pt/C, with a much more positive half-wave potential (0.927 V) and higher kinetic current density. Moreover, using the Fe-N/O-C catalyst, the Zn-air battery and proton exchange membrane fuel cell achieve peak power densities of up to 490 and 1179 mW cm-2, respectively. Theoretical studies and in situ electrochemical Raman spectroscopy reveal that Fe-N/O-C undergoes charge redistribution and negative shifting of the d-band center compared to Fe-N-C, thus optimizing the adsorption free energy of ORR intermediates. This work demonstrates the feasibility of introducing an asymmetric first coordination shell for single-atom catalysts and provides a new optimization direction for their practical application.

2.
Adv Mater ; : e2404093, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717804

ABSTRACT

Aqueous Zn-iodine (Zn-I2) conversion batteries with iodine redox chemistry suffers the severe polyiodide shuttling and sluggish redox kinetics, which impede the battery lifespan and rate capability. Herein, an ultrastable Zn-I2 battery is introduced based on single-atom Fe-N-C encapsulated high-surface-area carbon (HC@FeNC) as the core-shell cathode materials, which accelerate the I-/I3 -/I° conversion significantly. The robust chemical-physical interaction between polyiodides and Fe-N4 sites tightly binds the polyiodide ions and suppresses the polyiodide shuttling, thereby significantly enhancing the coulombic efficiency. As a result, the core-shell HC@FeNC cathode endows the electrolytic Zn-I2 battery with an excellent capacity, remarkable rate capability, and an ultralong lifespan over 60 000 cycles. More importantly, a practical 253 Wh kg-1 pouch cell shows good capacity retention of 84% after 100 cycles, underscoring its considerable potential for commercial Zn-I2 batteries.

3.
Nanomicro Lett ; 16(1): 139, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38421549

ABSTRACT

The exploration of sustainable energy utilization requires the implementation of advanced electrochemical devices for efficient energy conversion and storage, which are enabled by the usage of cost-effective, high-performance electrocatalysts. Currently, heterogeneous atomically dispersed catalysts are considered as potential candidates for a wide range of applications. Compared to conventional catalysts, atomically dispersed metal atoms in carbon-based catalysts have more unsaturated coordination sites, quantum size effect, and strong metal-support interactions, resulting in exceptional catalytic activity. Of these, dual-atomic catalysts (DACs) have attracted extensive attention due to the additional synergistic effect between two adjacent metal atoms. DACs have the advantages of full active site exposure, high selectivity, theoretical 100% atom utilization, and the ability to break the scaling relationship of adsorption free energy on active sites. In this review, we summarize recent research advancement of DACs, which includes (1) the comprehensive understanding of the synergy between atomic pairs; (2) the synthesis of DACs; (3) characterization methods, especially aberration-corrected scanning transmission electron microscopy and synchrotron spectroscopy; and (4) electrochemical energy-related applications. The last part focuses on great potential for the electrochemical catalysis of energy-related small molecules, such as oxygen reduction reaction, CO2 reduction reaction, hydrogen evolution reaction, and N2 reduction reaction. The future research challenges and opportunities are also raised in prospective section.

SELECTION OF CITATIONS
SEARCH DETAIL
...