Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 14(6): 3834-3840, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38274160

ABSTRACT

Polymeric membrane sensors based on molecular imprinted polymers (MIPs) have been attractive analytical tools for detecting organic species. However, the MIPs in electrochemical sensors developed so far are usually prepared by in situ polymerization of pre-polymers and non-covalent adsorption on the surface of the working electrode. Meanwhile, the MIPs in the electrochemical sensors developed are typically made of a non-conductive polymer film. This results in a relatively low current due to the lack of electron transfer. Additionally, the smoothness of the traditional electrochemical substrate results in a low specific surface area, which reduces the sensitivity of the electrochemical sensor. Here, we describe a novel electrochemical sensor with a conductive interface and MIPs modification. The electrochemical sensor was modified by covalent coupled layer by layer self-assembly with the imprinted polymer film. The incorporation of these two conductive functional materials improves the conductivity of the electrodes and provides interface support materials to obtain high specific surface area. By using 2,4,6-trichlorophenol as the model, the sensitivity of the developed conductive sensor was greatly improved compared to that of the traditional MIPs sensor. We believe that the proposed MIPs-based sensing strategy provides a general and convenient method for making sensitive and selective electrochemical sensors.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123677, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38039643

ABSTRACT

Perfluorobutanesulfonyl fluoride (PBSF) has been used in the manufacture of fluorochemicals. Since PBSF is not biodegradable, the predicted environmental levels of PBSF are also expected to rise over time. In recent years, there has been a rise in the levels of PBSF in humans. In order to clarify the impact of PBSF on the accumulation of substances in the human body, we examined the interaction mechanism between PBSF and bovine serum albumin (BSA). To investigate the interaction mechanism between PBSF and BSA, we utilized a range of methods including UV-visible spectrophotometry, fluorescence spectroscopy, circular dichroism, molecular docking simulation, and molecular dynamics (MD) simulation. The inherent fluorescence of BSA was effectively suppressed by PBSF through fluorescence quenching analysis, using a static mechanism. The Ka value of 1.34 × 105 mol-1 L indicated a strong binding between PBSF and BSA. Further analysis of the interaction between PBSF and BSA involved examining thermodynamic parameters, fluorescence resonance energy transfer, and conducting other theoretical calculations. These investigations produced results that were in strong accordance with the experimental observations. The participation of hydrophobic interactions between BSA and PBSF was uncovered through molecular docking and MD simulation investigations. Furthermore, this investigation explored the impact of copper ions (Cu2+) and calcium ions (Ca2+) on the interaction between PBSF and BSA, establishing a vital basis for comprehending the mechanism by which PBSF affects proteins in the human surroundings.


Subject(s)
Fluorocarbons , Serum Albumin, Bovine , Sulfonic Acids , Humans , Molecular Docking Simulation , Spectrophotometry, Ultraviolet , Spectrometry, Fluorescence , Circular Dichroism , Serum Albumin, Bovine/chemistry , Thermodynamics , Ions , Protein Binding , Binding Sites
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 291: 122289, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36628864

ABSTRACT

Chlorogenic acid(CGA) is the common active phenolic acid in Chinese medicinal materials such as honeysuckle and eucommia. It is a class of small molecules with multiple activities such as antioxidant, inhibiting cancer cells, lowering blood sugar and lowering blood pressure. In this paper, UV-vis spectroscopy, fluorescence spectroscopy, circular dichroism, molecular dynamics simulation and cyclic voltammetry (CV) electrochemical analysis were used to investigate the mechanism about interaction between CGA and BSA. Based on fluorescence quenching analysis, CGA quenched the inherent fluorescence of BSA remarkably through a static mechanism. The obtained value of binding constant (Kb = 5.75 × 105 L·mol-1) revealed a high binding affinity between CGA and BSA. The simulated molecular docking showed that hydrophobic force were also involved in the interaction between BSA and CGA. This paper also investigate the effect of temperature and metal ions on the binding of CGA and BSA. When the temperature increased, the binding of BSA and CGA was destroyed. Metal ions affect both the structure of BSA and the combination of BSA and CGA. By studying the mechanism of CGA interaction with BSA, we elucidated the storage and transport mechanism of CGA in vivo under simulated human environment and temperature conditions.


Subject(s)
Chlorogenic Acid , Serum Albumin, Bovine , Humans , Binding Sites , Chlorogenic Acid/chemistry , Circular Dichroism , Molecular Docking Simulation , Protein Binding , Serum Albumin, Bovine/chemistry , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet , Thermodynamics
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 278: 121341, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-35550993

ABSTRACT

Here, we report a novel aptasensor based on decahedral silver nanoparticles (Ag10NPs) enhanced fluorescence polarization (FP) for detecting PCB-77. Using aptamer modified Ag10NPs hybridized with DNA sequence labeled fluorescent group as an analytical probe, polychlorinated biphenyls (PCB-77) could be detected with high sensitivity and selectivity. The linear range of determination was 0.02 ng/L to 390 ng/L and the limit of detection was 5 pg/L. In addition, through the optimization of the experiment condition and signal probe DNA (pDNA), we found that the maximum FP signal could be generated when the distance between fluorescein and the surface of Ag10NPs was 3 nm. When the aptamer was immobilized on the surface of Ag10NPs could be strengthened the anti-interference performance of aptamer nanoprobe and further improved the detection ability. At the same time, we also compared the detection performance of the traditional FP signal enhancer streptavidin (SA) analysis system. The fluorescence polarization aptasensor could detect PCB-77 samples efficiently in complex environmental water, which shows a good application prospect.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Metal Nanoparticles , Polychlorinated Biphenyls , Biosensing Techniques/methods , Fluorescence Polarization/methods , Fluorescent Dyes , Limit of Detection , Silver
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 240: 118561, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32521445

ABSTRACT

In this article, a modified paper separation channel SERS substrate was fabricated by a pen writing method for the simultaneous separation and detection of thiuram and dimethoate. The hydrophilic channel was fabricated with both sides of hydrophobic barrier by the Alkylketene dimer (AKD) modified paper substrate, of which the flow dynamic was well conformed to the Lucas-Washburn model and could be used to separate pesticides effectively. As modified by Ag nanoparticles (AgNPs) and ZnO nanoparticles (ZnONPs), the hydrophilic channel exhibited high recyclable SERS detection activity and stability. The separation and detection performance with different target proportion, channel width and sample volume were studied in detail, which have significant influence on the diffusion process. Additionally, the Raman detects intensity on the substrate also showed linear relationship from 100 to 1000 µg/L. The calculated limit of detects (LODs) under optimal experimental conditions were 54.57 and 19.16 µg/L for dimethoate and thiuram, respectively. Due to the loading of ZnONPs, the substrate could be used repeatably with good stability. The convenient preparation, effective separation and repeatability make this paper based separation channel SERS substrate have great potential application on the fast separation and simultaneous detection of various pesticides in complex field.

SELECTION OF CITATIONS
SEARCH DETAIL
...